• Military medicine · Aug 2024

    Antiviral Efficacy Testing of a Rechargeable Textile.

    • Mina Izadjoo, Kylin Carhart, Vanessa Marcel, Salman Izadjoo, Faith Swicegood, Casey Merritt, and Geroge Clarke.
    • Integrated Pharma Services, Rockville, MD 20850, USA.
    • Mil Med. 2024 Aug 19; 189 (Supplement_3): 525529525-529.

    IntroductionIn light of the COVID-19 (Coronovirus Disease 2019) pandemic, the use of personal protective equipment has become essential to reduce viral transmission and maintain public health. Viruses, particularly human coronavirus and influenza, pose significant challenges because of their various transmission routes. UMF Corporation's innovation, Micrillon, aims to address these challenges by creating durable, antiviral technology for textiles without harmful chemicals, reducing viral transmission risks.Materials And MethodsThe study followed ISO Standard 18184:2019, testing Micrillon textiles against Human Coronavirus OC43 and H1N1 Influenza A virus using MDCK and HCT-8 cell lines. Cell propagation, viral application, TCID50 (Median Tissue Culture Infectious Dose) testing, and maintenance protocols were rigorously implemented to assess antiviral efficacy.ResultsMicrillon gloves, fabrics, and fibers exhibited high antiviral efficacy against both viruses across various contact times. Gloves demonstrated exceptional antiviral activity against H1N1 (99.88%) and OC43 (99.67%) at 120 minutes. Rolled fabrics showed strong efficacy against H1N1 (99.42% at 30 minutes) and OC43 (>97%) at all time points. Bundled fibers displayed substantial efficacy against H1N1 (99.17% at 120 minutes) and OC43 (>98%) at all time points.ConclusionsThe study demonstrates that Micrillon technology effectively inhibits viral activity, particularly in gloves, fabrics, and fibers. The innovation not only shows high antiviral efficacy against both Human Coronavirus and Influenza but also promises a reusable, sustainable solution, mitigating environmental impact and reducing the use of harmful chemicals in personal protective equipment. The technology holds promise for widespread use in health care and hospitality, offering a layer of protection while being environmentally conscious. Further development of such technologies can significantly reduce infection risks while minimizing environmental harm.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…