• Military medicine · Aug 2024

    The U.S. Army Aeromedical Research Laboratory Virtual Reality Vection System.

    • Leonard A Temme, Ryan Nagy, and Isaiah Persson.
    • Warfighter Protection Group, U.S. Army Aeromedical Research Laboratory, Fort Novosel, AL 63660, USA.
    • Mil Med. 2024 Aug 19; 189 (Suppl 3): 751758751-758.

    IntroductionVection is a stationary individual's illusory experience of self-motion. This illusory self-motion is operationally important for aviation, particularly military aviation, since vection is a dramatic example of spatial disorientation (SD), which is an individual's failure to correctly sense the aircraft's position, motion, and/or attitude with respect to the fixed coordinate system of the Earth's surface and its gravitational vertical. Notably, SD is a major cause of fatal aviation mishaps, and the visual system is particularly prone to provoking vection. This article describes the Virtual Reality Vection System (VRVS), which uses computer-controlled virtual reality technology to induce vection under controlled conditions for training, demonstration, testing, and research.Materials And MethodsThe VRVS enables the precise specification of the number and appearance of visual stimulus elements intended to generate vection, including photorealistic images. The VRVS can present visual stimuli on any OpenXR-capable virtual reality headset. The VRVS currently records 2 types of behavioral responses, button presses to indicate the presence and duration of vection and the voltage of a handheld linear potentiometer to indicate the presence, duration, and magnitude of vection.ResultsAn approved test plan helped guide, organize, document, and validate the VRVS during its development. Under this plan, a pair of tests guided hardware and software development of the VRVS system. Although the first test verified the ability of the VRVS to generate and measure vection, it also demonstrated that the VRVS can quickly manipulate the visual stimuli from one trial to the next so that the VRVS can support complex experimental designs. The second test used these capabilities to verify that the VRVS can characterize vection in a more analytic fashion using a masking paradigm. Specifically, the test assessed whether random stimulus elements injected into the vection-inducing stimulus disrupted vection in a quantifiable fashion. This work opens the door to studies that characterize the necessary and sufficient visual elements for vection-based SD.DiscussionThe VRVS is currently used to research, develop, test, and evaluate mitigation strategies targeting vection-related SD in degraded visual environments. Similarly, the VRVS is supporting research to develop methods to predict individual differences in visually induced motion sickness susceptibilities. The VRVS is currently being integrated with a precision motor-controlled rotating Barany chair for multisensory studies. It should be noted that since the VRVS was developed to support United States Army Aeromedical Research Laboratory projects, it is an Army product representing government intellectual property and may be freely available to other government institutions.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2024. This work is written by (a) US Government employee(s) and is in the public domain in the US.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.