-
- Dong Dong, Koichi Hosomi, Takeshi Shimizu, Ken-Ichi Okada, Yoshinori Kadono, Nobuhiko Mori, Yuki Hori, Noriaki Yahata, Toshiyuki Hirabayashi, Haruhiko Kishima, and Youichi Saitoh.
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- J Pain. 2024 Dec 1; 25 (12): 104661104661.
AbstractThalamic pain can be understood as a network reorganization disorder. This study aimed to investigate functional connectivity (FC) in human patients and a macaque model of thalamic pain. In humans, resting-state FC was compared between patients with thalamic pain and healthy individuals. Furthermore, resting-state FC was compared in macaques, before and after the induction of thalamic pain in the same individuals. FC between the amygdala of the unaffected hemisphere and the brainstem was significantly higher in patients with thalamic pain. More specifically, a significantly higher FC was observed between the basolateral amygdala and the ventral tegmental area, which also significantly predicted the value of a visual analog scale of pain intensity in individual patients. The macaque model of thalamic pain also exhibited a significantly higher FC between the amygdala of the unaffected hemisphere and the brainstem, particularly between the basolateral amygdala and the midbrain. Furthermore, the previously reported significantly higher FC between the amygdala and the mediodorsal nucleus of the thalamus in macaques with thalamic pain was also reproduced in the human patients. Therefore, the present results suggest that the FC changes in the regions associated with emotion, memory, motivation, and reward are part of the underlying mechanisms of thalamic pain onset present in both human patients and model macaques. This cross-species convergence provides new insights into the neurological mechanisms underlying thalamic pain, paving the way for further studies and the development of therapeutic strategies. PERSPECTIVE: This article presents that the FC changes in the regions associated with emotion, motivation, and reward are part of the underlying mechanisms of thalamic pain in humans and macaques.Copyright © 2024 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.