• Medicine · Sep 2024

    Diffusion-weighted MR image analysis based on gamma distribution model for differentiating benign and malignant brain tumors.

    • Zeinab Soleimani, Masih Saboori, Iraj Abedi, Maziar Irannejad, and Saeid Khanbabapour.
    • Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
    • Medicine (Baltimore). 2024 Sep 6; 103 (36): e39593e39593.

    BackgroundConsidering the invasiveness of the biopsy method, we attempted to evaluate the ability of the gamma distribution model using magnetic resonance imaging images to stage and grade benign and malignant brain tumors.MethodsA total of 42 patients with malignant brain tumors (including glioma, lymphoma, and choroid plexus papilloma) and 24 patients with benign brain tumors (meningioma) underwent diffusion-weighted imaging using five b-values ranging from 0 to 2000 s/mm2 with a 1.5 T scanner. The gamma distribution model is expected to demonstrate the probability of water molecule distribution based on the apparent diffusion coefficient. For all tumors, the apparent diffusion coefficient, shape parameter (κ), and scale parameter (θ) were calculated for each b-value. In the staging step, the fractions (ƒ1, ƒ2, ƒ3) expected to reflect the intracellular, and extracellular diffusion and perfusion were investigated. Diffusion <1 × 10-4 mm2/s (ƒ1), 1 × 10-4 mm2/s < Diffusion > 3 × 10-4 mm2/s (ƒ2), and Diffusion >3 × 10-4 mm2/s (ƒ3); in the grading step, fractions were determined to check heavily restricted diffusion. Diffusion lower than 0.3 × 10-4 mm2/s (ƒ11). Diffusion lower than 0.5 × 10-4 mm2/s (ƒ12). Diffusion lower than 0.8 × 10-4 mm2/s (ƒ13).ResultsThe findings were analyzed using nonparametric statistics and receiver operating characteristic curve diagnostic performance. Gamma model parameters (κ, ƒ1, ƒ2, ƒ3) showed a satisfactory difference in differentiating meningioma from glioma. For b value = 2000 s/mm2, ƒ1 had a better diagnostic performance than κ and apparent diffusion coefficient (sensitivity, 88%; specificity, 68%; P < .001). The best diagnostic performance was related to ƒ3 in b = 2000 s/mm2 (area under the curve = 0.891, sensitivity = 83%, specificity = 80%, P < .001). In the grading step, ƒ12 (area under the curve = 0.870, sensitivity = 92%, specificity = 72%, P < .001) had the best diagnostic performance in differentiating high-grade from low-grade gliomas with b = 2000 s/mm2.ConclusionThe findings of our study highlight the potential of using a gamma distribution model with diffusion-weighted imaging based on multiple b-values for grading and staging brain tumors. Its potential integration into routine clinical practice could advance neurooncology and improve patient outcomes through more accurate diagnosis and treatment planning.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…