-
- Yang Li, Qinyu Xiao, Haiqi Chen, Enzhao Zhu, Xin Wang, Jianmeng Dai, Xu Zhang, Qiuyi Lu, Yanming Zhu, and Guangliang Yang.
- Heilongjiang University of Chinese Medicine, Harbin, China.
- Medicine (Baltimore). 2024 Sep 13; 103 (37): e39659e39659.
AbstractTo assess deep learning models for personalized chemotherapy selection and quantify the impact of baseline characteristics on treatment efficacy for elderly head and neck squamous cell carcinoma (HNSCC) patients who are not surgery candidates. A comparison was made between patients whose treatments aligned with model recommendations and those whose did not, using overall survival as the primary metric. Bias was addressed through inverse probability treatment weighting (IPTW), and the impact of patient characteristics on treatment choice was analyzed via mixed-effects regression. Four thousand two hundred seventy-six elderly HNSCC patients in total met the inclusion criteria. Self-Normalizing Balanced individual treatment effect for survival data model performed best in treatment recommendation (IPTW-adjusted hazard ratio: 0.74, 95% confidence interval [CI], 0.63-0.87; IPTW-adjusted risk difference: 9.92%, 95% CI, 4.96-14.90; IPTW-adjusted the difference in restricted mean survival time: 16.42 months, 95% CI, 10.83-21.22), which surpassed other models and National Comprehensive Cancer Network guidelines. No survival benefit for chemoradiotherapy was seen for patients not recommended to receive this treatment. Self-Normalizing Balanced individual treatment effect for survival data model effectively identifies elderly HNSCC patients who could benefit from chemoradiotherapy, offering personalized survival predictions and treatment recommendations. The practical application will become a reality with further validation in clinical settings.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.