• Rev Assoc Med Bras (1992) · Jan 2024

    Investigating artificial intelligence models for predicting joint pain from serum biochemistry.

    • Saman Shahid, Aatir Javaid, Usman Amjad, and Jawad Rasheed.
    • National University of Computer and Emerging Sciences, Foundation for the Advancement of Science and Technology, Department of Sciences and Humanities - Lahore, Pakistan.
    • Rev Assoc Med Bras (1992). 2024 Jan 1; 70 (9): e20240381e20240381.

    ObjectiveThe study used machine learning models to predict the clinical outcome with various attributes or when the models chose features based on their algorithms.MethodsPatients who presented to an orthopedic outpatient department with joint swelling or myalgia were included in the study. A proforma collected clinical information on age, gender, uric acid, C-reactive protein, and complete blood count/liver function test/renal function test parameters. Machine learning decision models (Random Forest and Gradient Boosted) were evaluated with the selected features/attributes. To categorize input data into outputs of indications of joint discomfort, multilayer perceptron and radial basis function-neural networks were used.ResultsThe random forest decision model outperformed with 97% accuracy and minimum errors to anticipate joint pain from input attributes. For predicted classifications, the multilayer perceptron fared better with an accuracy of 98% as compared to the radial basis function. Multilayer perceptron achieved the following normalized relevance: 100% (uric acid), 10.3% (creatinine), 9.8% (AST), 5.4% (lymphocytes), and 5% (C-reactive protein) for having joint pain. Uric acid has the highest normalized relevance for predicting joint pain.ConclusionThe earliest artificial intelligence-based detection of joint pain will aid in the prevention of more serious orthopedic complications.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…