• Am J Emerg Med · Nov 2024

    Review

    Diagnostic evaluation of blunt chest trauma by imaging-based application of artificial intelligence: A review.

    • Tingting Zhao, Xianghong Meng, Zhi Wang, Yongcheng Hu, Hongxing Fan, Jun Han, Nana Zhu, and Feige Niu.
    • The Department of Radiology, Tianjin University Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, China; Graduate School, Tianjin University, Tianjin, China.
    • Am J Emerg Med. 2024 Nov 1; 85: 354335-43.

    AbstractArtificial intelligence (AI) is becoming increasingly integral in clinical practice, such as during imaging tasks associated with the diagnosis and evaluation of blunt chest trauma (BCT). Due to significant advances in imaging-based deep learning, recent studies have demonstrated the efficacy of AI in the diagnosis of BCT, with a focus on rib fractures, pulmonary contusion, hemopneumothorax and others, demonstrating significant clinical progress. However, the complicated nature of BCT presents challenges in providing a comprehensive diagnosis and prognostic evaluation, and current deep learning research concentrates on specific clinical contexts, limiting its utility in addressing BCT intricacies. Here, we provide a review of the available evidence surrounding the potential utility of AI in BCT, and additionally identify the challenges impeding its development. This review offers insights on how to optimize the role of AI in the diagnostic evaluation of BCT, which can ultimately enhance patient care and outcomes in this critical clinical domain.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…