-
- Chung-Ping Chiu, Hsin-Hung Chou, Peng-Chan Lin, Ching-Chi Lee, and Sun-Yuan Hsieh.
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan. Electronic address: ne6101131@gs.ncku.edu.tw.
- Am J Emerg Med. 2024 Nov 1; 85: 808580-85.
BackgroundDespite advancements in antimicrobial therapies, bacteremia remains a life-threatening condition. Appropriate antimicrobials must be promptly administered to ensure patient survival. However, diagnosing bacteremia based on blood cultures is time-consuming and not something emergency department (ED) personnel are routinely trained to do.MethodsThis retrospective cohort study developed several machine learning (ML) models to predict bacteremia in adults initially presenting with fever or hypothermia, comprising logistic regression, random forest, extreme gradient boosting, support vector machine, k-nearest neighbor, multilayer perceptron, and ensemble models. Random oversampling and synthetic minority oversampling techniques were adopted to balance the dataset. The variables included demographic characteristics, comorbidities, immunocompromised status, clinical characteristics, subjective symptoms reported during ED triage, and laboratory data. The study outcome was an episode of bacteremia.ResultsOf the 5063 patients with initial fever or hypothermia from whom blood cultures were obtained, 128 (2.5 %) were diagnosed with bacteremia. We combined 36 selected variables and 10 symptoms subjectively reported by patients into features for analysis in our models. The ensemble model outperformed other models, with an area under the receiver operating characteristic curve (AUROC) of 0.930 and an F1-score of 0.735. The AUROC of all models was higher than 0.80.ConclusionThe ML models developed effectively predicted bacteremia among febrile or hypothermic patients in the ED, with all models demonstrating high AUROC values and rapid processing times. The findings suggest that ED clinicians can effectively utilize ML techniques to develop predictive models for addressing clinical challenges.Copyright © 2024. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.