-
Journal of neurotrauma · Oct 2024
Exploring synaptic pathways in traumatic brain injury: a cross-phenotype genomics approach.
- Savvina Prapiadou, Ernst Mayerhofer, Marios K Georgakis, Mart Kals, Farid Radmanesh, Saef Izzy, Sylvia Richardson, David Okonkwo, Ava Puccio, Nancy Temkin, Aarno Palotie, Samuli Ripatti, Ramon Diaz-Arrastia, Murray B Stein, Geoff Manley, David K Menon, Jonathan Rosand, Livia Parodi, Christopher D Anderson, and Genetic Associations In Neurotrauma (GAIN) Consortium (with contribution from the CENTER-TBI, TRACK-TBI, CABI, MGB, and TBIcare studies).
- University of Patras Medical School, Patras, Greece.
- J. Neurotrauma. 2024 Oct 7.
AbstractTraumatic brain injury (TBI), a global leading cause of mortality and disability, lacks effective treatments to enhance recovery. Synaptic remodeling has been postulated as one mechanism that influences outcomes after TBI. We sought to investigate whether common mechanisms affecting synapse maintenance are shared between TBI and other neuropsychiatric conditions using pathway enrichment tools and genome-wide genotype data, with the goal of highlighting novel treatment targets. We leveraged an integrative approach, combining data from genome-wide association studies with pathway and gene-set enrichment analyses. Literature review-based and Reactome database-driven approaches were combined to identify synapse-related pathways of interest in TBI outcome and to assess for shared associations with conditions in which synapse-related pathobiological mechanisms have been implicated, including Alzheimer's disease, schizophrenia (SCZ), major depressive disorder, post-traumatic stress disorder, attention-deficit hyperactivity disorder, and autism spectrum disorder. Gene and pathway-level enrichment analyses were conducted using MAGMA and its extensions, e- and H-MAGMA, followed by Mendelian randomization to investigate potential causal associations. Of the 98 pathways tested, 32 were significantly enriched in the included conditions. In TBI outcome, we identified significant enrichment in five pathways: "Serotonin clearance from the synaptic cleft" (p = 0.0001), "Presynaptic nicotinic acetylcholine receptors" (p = 0.0003), "Postsynaptic nicotinic acetylcholine receptors" (p = 0.0003), "Highly sodium permeable postsynaptic acetylcholine nicotinic receptors" (p = 0.0001), and "Acetylcholine binding and downstream events" pathways (p = 0.0003). These associations highlight potential involvement of the cholinergic and serotonergic systems in post-TBI recovery. Three of those pathways were shared between TBI and SCZ, suggesting possible pathophysiologic commonalities. In this study, we utilize comparative and integrative genomic approaches across brain conditions that share synaptic mechanisms to explore the pathophysiology of TBI outcomes. Our results implicate associations between TBI outcome and synaptic pathways as well as pathobiological overlap with other neuropsychiatric diseases.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.