• J Neurosurg Pediatr · Nov 2009

    Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury.

    • Anthony A Figaji, Eugene Zwane, A Graham Fieggen, Andrew C Argent, Peter D Le Roux, Peter Siesjo, and Jonathan C Peter.
    • Division of Neurosurgery, School of Child and Adolescent Health, University of Cape Town, Red Cross Children's Hospital, Cape Town, South Africa. Anthony.Figaji@uct.ac.za
    • J Neurosurg Pediatr. 2009 Nov 1;4(5):420-8.

    ObjectCerebral pressure autoregulation is an important neuroprotective mechanism that stabilizes cerebral blood flow when blood pressure (BP) changes. In this study the authors examined the association between autoregulation and clinical factors, BP, intracranial pressure (ICP), brain tissue oxygen tension (PbtO(2)), and outcome after pediatric severe traumatic brain injury (TBI). In particular we examined how the status of autoregulation influenced the effect of BP changes on ICP and PbtO(2).MethodsIn this prospective observational study, 52 autoregulation tests were performed in 24 patients with severe TBI. The patients had a mean age of 6.3 +/- 3.2 years, and a postresuscitation Glasgow Coma Scale score of 6 (range 3-8). All patients underwent continuous ICP and PbtO(2) monitoring, and transcranial Doppler ultrasonography was used to examine the autoregulatory index (ARI) based on blood flow velocity of the middle cerebral artery after increasing mean arterial pressure by 20% of the baseline value. Impaired autoregulation was defined as an ARI < 0.4 and intact autoregulation as an ARI >or= 0.4. The relationships between autoregulation (measured as both a continuous and dichotomous variable), outcome, and clinical and physiological variables were examined using multiple logistic regression analysis.ResultsAutoregulation was impaired (ARI < 0.4) in 29% of patients (7 patients). The initial Glasgow Coma Scale score was significantly associated with the ARI (p = 0.02, r = 0.32) but no other clinical factors were associated with autoregulation status. Baseline values at the time of testing for ICP, PbtO(2), the ratio of PbtO(2)/PaO(2), mean arterial pressure, and middle cerebral artery blood flow velocity were similar in the patients with impaired or intact autoregulation. There was an inverse relationship between ARI (continuous and dichotomous) with a change in ICP (continuous ARI, p = 0.005; dichotomous ARI, p = 0.02); that is, ICP increased with the BP increase when ARI was low (weak autoregulation). The ARI (continuous and dichotomous) was also inversely associated with a change in PbtO(2) (continuous ARI, p = 0.002; dichotomous ARI, p = 0.02). The PbtO(2) increased when BP was increased in most patients, even when the ARI was relatively high (stronger autoregulation), but the magnitude of this response was still associated with the ARI. There was no relationship between the ARI and outcome.ConclusionsThese data demonstrate the influence of the strength of autoregulation on the response of ICP and PbtO(2) to BP changes and the variability of this response between individuals. The findings suggest that autoregulation testing may assist clinical decision-making in pediatric severe TBI and help better define optimal BP or cerebral perfusion pressure targets for individual patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.