-
- Clara Kwon Starkweather, Leo P Sugrue, Iahn Cajigas, Benjamin Speidel, Andrew D Krystal, Katherine Scangos, and Edward F Chang.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.
- Neurosurgery. 2024 Oct 1; 95 (4): 941948941-948.
Background And ObjectivesTreatment-resistant depression is a leading cause of disability. Our center's trial for neurosurgical intervention for treatment-resistant depression involves a staged workup for implantation of a personalized, closed-loop neuromodulation device for refractory depression. The first stage ("stage 1") of workup involves implantation of 10 stereoelectroencephalography (SEEG) electrodes bilaterally into 5 anatomically defined brain regions and involves a specialized preoperative imaging and planning workup and a frame-based operating protocol.MethodsWe rely on diffusion tractography when planning stereotactic targets for 3 of 5 anatomic areas. We outline the rationale and fiber tracts that we focus on for targeting amygdala, ventral striatum and ventral capsule, and subgenual cingulate. We also outline frame-based stereotactic considerations for implantation of SEEG electrodes.Expected OutcomesOur method has allowed us to safely target all 5 brain areas in 3 of 3 trial participants in this ongoing study, with adequate fiber bundle contact in each of the 3 areas targeted using tractography. Furthermore, we ultimately used tractography data from our stage 1 workup to guide targeting near relevant fiber bundles for stage 2 (implantation of a responsive neuromodulation device). On completion of our data set, we will determine the overlap between volume of tissue activated for all electrodes and areas of interest defined by anatomy and tractography.DiscussionOur protocol outlined for SEEG electrode implantation incorporates tractography and frame-based stereotaxy.Copyright © Congress of Neurological Surgeons 2024. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.