• Prehosp Emerg Care · Sep 2024

    Artificial Intelligence Driven Prehospital ECG Interpretation for the Reduction of False Positive Emergent Cardiac Catheterization Lab Activations: A Retrospective Cohort Study.

    • Peter O Baker, Shifa R Karim, Stephen W Smith, H Pendell Meyers, Aaron E Robinson, Ishmam Ibtida, Rehan M Karim, Gabriel A Keller, Kristie A Royce, and Michael A Puskarich.
    • Department of Emergency Medicine, University of Minnesota Medical School, Minneapolis, Minnesota.
    • Prehosp Emerg Care. 2024 Sep 12: 191-9.

    ObjectivesData suggest patients suffering acute coronary occlusion myocardial infarction (OMI) benefit from prompt primary percutaneous intervention (PPCI). Many emergency medical services (EMS) activate catheterization labs to reduce time to PPCI, but suffer a high burden of inappropriate activations. Artificial intelligence (AI) algorithms show promise to improve electrocardiogram (ECG) interpretation. The primary objective was to evaluate the potential of AI to reduce false positive activations without missing OMI.MethodsElectrocardiograms were categorized by (1) STEMI criteria, (2) ECG integrated device software and (3) a proprietary AI algorithm (Queen of Hearts (QOH), Powerful Medical). If multiple ECGs were obtained and any one tracing was positive for a given method, that diagnostic method was considered positive. The primary outcome was OMI defined as an angiographic culprit lesion with either TIMI 0-2 flow; or TIMI 3 flow with either peak high sensitivity troponin-I > 5000 ng/L or new wall motion abnormality. The primary analysis was per-patient proportion of false positives.ResultsA total of 140 patients were screened and 117 met criteria. Of these, 48 met the primary outcome criteria of OMI. There were 80 positives by STEMI criteria, 88 by device algorithm, and 77 by AI software. All approaches reduced false positives, 27% for STEMI, 22% for device software, and 34% for AI (p < 0.01 for all). The reduction in false positives did not significantly differ between STEMI criteria and AI software (p = 0.19) but STEMI criteria missed 6 (5%) OMIs, while AI missed none (p = 0.01).ConclusionsIn this single-center retrospective study, an AI-driven algorithm reduced false positive diagnoses of OMI compared to EMS clinician gestalt. Compared to AI (which missed no OMI), STEMI criteria also reduced false positives but missed 6 true OMI. External validation of these findings in prospective cohorts is indicated.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…