-
- Mark Iscoe, Vimig Socrates, Aidan Gilson, Ling Chi, Huan Li, Thomas Huang, Thomas Kearns, Rachelle Perkins, Laura Khandjian, and TaylorR AndrewRA0000-0002-9082-6644Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA.Section for Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, Connecticut, USA..
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
- Acad Emerg Med. 2024 Jun 1; 31 (6): 599610599-610.
BackgroundNatural language processing (NLP) tools including recently developed large language models (LLMs) have myriad potential applications in medical care and research, including the efficient labeling and classification of unstructured text such as electronic health record (EHR) notes. This opens the door to large-scale projects that rely on variables that are not typically recorded in a structured form, such as patient signs and symptoms.ObjectivesThis study is designed to acquaint the emergency medicine research community with the foundational elements of NLP, highlighting essential terminology, annotation methodologies, and the intricacies involved in training and evaluating NLP models. Symptom characterization is critical to urinary tract infection (UTI) diagnosis, but identification of symptoms from the EHR has historically been challenging, limiting large-scale research, public health surveillance, and EHR-based clinical decision support. We therefore developed and compared two NLP models to identify UTI symptoms from unstructured emergency department (ED) notes.MethodsThe study population consisted of patients aged ≥ 18 who presented to an ED in a northeastern U.S. health system between June 2013 and August 2021 and had a urinalysis performed. We annotated a random subset of 1250 ED clinician notes from these visits for a list of 17 UTI symptoms. We then developed two task-specific LLMs to perform the task of named entity recognition: a convolutional neural network-based model (SpaCy) and a transformer-based model designed to process longer documents (Clinical Longformer). Models were trained on 1000 notes and tested on a holdout set of 250 notes. We compared model performance (precision, recall, F1 measure) at identifying the presence or absence of UTI symptoms at the note level.ResultsA total of 8135 entities were identified in 1250 notes; 83.6% of notes included at least one entity. Overall F1 measure for note-level symptom identification weighted by entity frequency was 0.84 for the SpaCy model and 0.88 for the Longformer model. F1 measure for identifying presence or absence of any UTI symptom in a clinical note was 0.96 (232/250 correctly classified) for the SpaCy model and 0.98 (240/250 correctly classified) for the Longformer model.ConclusionsThe study demonstrated the utility of LLMs and transformer-based models in particular for extracting UTI symptoms from unstructured ED clinical notes; models were highly accurate for detecting the presence or absence of any UTI symptom on the note level, with variable performance for individual symptoms.© 2024 Society for Academic Emergency Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.