• J Clin Monit Comput · Sep 2024

    Review

    A review of machine learning methods for non-invasive blood pressure estimation.

    • Ravi Pal, Joshua Le, Akos Rudas, Jeffrey N Chiang, Tiffany Williams, Brenton Alexander, Alexandre Joosten, and Maxime Cannesson.
    • Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Los Angeles, CA, 90095, USA. RPal@mednet.ucla.edu.
    • J Clin Monit Comput. 2024 Sep 21.

    AbstractBlood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension, both of which increasing morbidity for a wide variety of reasons. This monitoring can be done either invasively or non-invasively and intermittently vs. continuously. An invasive method is considered the gold standard and provides continuous measurement, but it carries higher risks of complications such as infection, bleeding, and thrombosis. Non-invasive techniques, in contrast, reduce these risks and can provide intermittent or continuous blood pressure readings. This review explores modern machine learning-based non-invasive methods for blood pressure estimation, discussing their advantages, limitations, and clinical relevance.© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…