-
- Mustafa Hüseyin Temel, Yakup Erden, and Fatih Bağcıer.
- Üsküdar State Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul, Türkiye. Electronic address: mhuseyintemel@gmail.com.
- World Neurosurg. 2024 Oct 8; 193: 309314309-314.
ObjectivePain is a complex sensory and emotional experience that significantly impacts individuals' well-being. Lumbar radicular pain (LRP) is a prevalent neuropathic pain affecting 9.9% to 25% of the population annually. Accurate identification of pain patterns in LRP is essential for diagnosis and management. Artificial intelligence has potential in health care but faces challenges in reliability and accuracy. This study aimed to investigate the accuracy and consistency of LRP patterns demonstrated by ChatGPT-4o.MethodsThe study was conducted at Üsküdar State Hospital from June 1 to June 30, 2024, utilizing the Generative Pretrained Transformer (GPT), version 4o language model. ChatGPT-4o was prompted to generate and mark LRP patterns for L4, L5, and S1 radiculopathies on an anatomical model. The process was repeated after two weeks to assess consistency. The markings by ChatGPT were compared with those by two experienced specialists using OpenCV for analysis.ResultsChatGPT's initial and follow-up markings of L4, L5, and S1 radiculopathy pain patterns were statistically significantly different from each other and from the specialists' markings (P < 0.001 for all comparisons).ConclusionsChatGPT currently lacks the capacity to accurately and consistently represent LRP patterns. AI tools in health care require further refinement, validation, and regulation to ensure reliability and safety. Future research should involve multiple AI platforms and broader medical conditions to enhance generalizability.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.