-
- Peter Galos, Ludvig Hult, Dave Zachariah, Anders Lewén, Anders Hånell, Timothy Howells, Thomas B Schön, and Per Enblad.
- Division of Neurosurgery, Department of Medical Sciences, Uppsala University, Uppsala, Sweden. peter.galos@neuro.uu.se.
- Neurocrit Care. 2024 Sep 25.
BackgroundIn neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, which may in turn lead to stopping the predicted ICP insult from occurring. The aim of this study was to evaluate the performance of different artificial intelligence models in predicting the risk of ICP insults.MethodsThe models were trained to predict risk of ICP insults starting within 30 min, using the Uppsala high frequency TBI dataset. A restricted dataset consisting of only monitoring data were used, and an unrestricted dataset using monitoring data as well as clinical data, demographic data, and radiological evaluations was used. Four different model classes were compared: Gaussian process regression, logistic regression, random forest classifier, and Extreme Gradient Boosted decision trees (XGBoost).ResultsSix hundred and two patients with TBI were included (total monitoring 138,411 h). On the task of predicting upcoming ICP insults, the Gaussian process regression model performed similarly on the Uppsala high frequency TBI dataset (sensitivity 93.2%, specificity 93.9%, area under the receiver operating characteristic curve [AUROC] 98.3%), as in earlier smaller studies. Using a more flexible model (XGBoost) resulted in a comparable performance (sensitivity 93.8%, specificity 94.6%, AUROC 98.7%). Adding more clinical variables and features further improved the performance of the models slightly (XGBoost: sensitivity 94.1%, specificity of 94.6%, AUROC 98.8%).ConclusionsArtificial intelligence models have potential to become valuable tools for predicting ICP insults in advance during neurointensive care. The fact that common off-the-shelf models, such as XGBoost, performed well in predicting ICP insults opens new possibilities that can lead to faster advances in the field and earlier clinical implementations.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.