• Eur. J. Intern. Med. · Sep 2024

    A large language model-based clinical decision support system for syncope recognition in the emergency department: A framework for clinical workflow integration.

    • Alessandro Giaj Levra, Mauro Gatti, Roberto Mene, Dana Shiffer, Giorgio Costantino, Monica Solbiati, Raffaello Furlan, and Franca Dipaola.
    • Department of Cardiovascular Medicine, Humanitas Research Hospital, IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
    • Eur. J. Intern. Med. 2024 Sep 28.

    AbstractDifferentiation of syncope from transient loss of consciousness can be challenging in the emergency department (ED). Natural Language Processing (NLP) enables the analysis of free text in the electronic medical records (EMR). The present paper aimed to develop a large language models (LLM) for syncope recognition in the ED and proposed a framework for model integration within the clinical workflow. Two models, based on both the Italian and Multilingual Bidirectional Encoder Representations from Transformers (BERT) language model, were developed using consecutive EMRs. The "triage" model was only based on notes contained in the "triage" section of the EMR. The "anamnesis" model added data contained in the "medical history" section. Interpretation and calibration plots were generated. The Italian and Multi BERT models were developed and tested on both 15,098 and 15,222 EMRs, respectively. The triage model had an AUC of 0·95 for the Italian BERT and 0·94 for the Multi BERT. The anamnesis model had an AUC of 0·98 for the Italian BERT and 0·97 for Multi BERT. The LLM identified syncope when not explicitly mentioned in the EMR and also recognized common prodromal symptoms preceding syncope. Both models identified syncope patients in the ED with a high discriminative capability from nurses and doctors' notes, thus potentially acting as a tool helping physicians to differentiate syncope from others transient loss of consciousness.Copyright © 2024. Published by Elsevier B.V.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.