• Burns · Dec 2024

    Evaluating mechanical and biological responses of bipolymeric drug-chitosan-hydroxyapatite scaffold for wounds: Fabrication, characterization, and finite element analysis.

    • Qihao Wang, Xiaodong Sun, Ali Basem, Albę Słabi Hussam, Sh Baghaei, and R Rezaei.
    • School of Physical Education, Hunan Normal University, Changsha 410081, China.
    • Burns. 2024 Dec 1; 50 (9): 107207107207.

    AbstractThis study aims to explore the potential of a scaffold composed of drug-chitosan-hydroxyapatite (HA) in improving tissue treatment. The focus of the investigation lies in analyzing the physical and biological properties of the scaffold and evaluating its mechanical characteristics through finite-element analysis. To synthesize microcapsules containing dextran-diclofenac sodium, the electrospraying method was employed. The drug-chitosan-HA scaffold with varying volume fractions (VF) of the synthesized microcapsules (10, 15, and 20) was fabricated using the freeze-drying technique. Microscopic and scanning electron microscopy (SEM) images were utilized to evaluate the morphology, shape, and size of the microcapsules, as well as the porosity of the scaffolds for wound healing purposes. The mechanical properties of the synthesized microcapsules were determined via a nanoindentation test, while the mechanical behavior of the fabricated scaffolds was assessed through compression testing. Additionally, a multiscale finite-element model was developed to predict the mechanical properties of tissue scaffolds containing pharmaceutical microcapsules. The findings indicate that the incorporation of drug-chitosan-hydroxyapatite into the tissue significantly enhances both mechanical and biological responses. The mechanical evaluations demonstrate that the drug-chitosan-hydroxyapatite tissue exhibits excellent resistance to pressure, making it a suitable protective covering for skin wounds. Moreover, biological evaluations reveal that an increase in scaffold porosity leads to higher swelling behavior. The scaffold containing 20 % pharmaceutical microcapsules demonstrated the greatest swelling and desirable antibacterial properties, thereby indicating its potential as an effective wound dressing. Furthermore, a multiscale finite-element model was developed to predict the mechanical properties of tissue containing pharmaceutical microcapsules. The results indicated that the average size of the microcapsules was in the range of 170 to 180 µm, and the porosity of the prepared tissue was between 52 % and 61 %. The experimental compressive properties revealed that an increase in the volume fraction of the embedded microcapsules led to an increase in the maximum compressive stress and compressive modulus of the scaffolds by up to 54.95 % and 53.18 %, respectively, for the scaffold containing 20 % VF of pharmaceutical microcapsules compared to the specimen containing 10 % VF. In conclusion, the developed scaffold has the potential to serve as an effective wound dressing, with the ability to provide structural support, facilitate controlled drug release, and promote wound healing.Copyright © 2024 Elsevier Ltd and International Society of Burns Injuries. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…