• Respiratory care · Oct 2024

    Comparison of Web-Based and On-Site Lung Simulators for Education in Mechanical Ventilation.

    • Sami Safadi, Megan Acho, Stephanie I Maximous, Michael B Keller, Eric Kriner, Christian J Woods, Junfeng Sun, Bashar S Staitieh, Burton W Lee, Nitin Seam, and Critical Care Education Research Consortium.
    • Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, Minnesota. safad002@umn.edu.
    • Respir Care. 2024 Oct 8.

    BackgroundTraining in mechanical ventilation is a key goal in critical care fellowship education. Web-based simulators offer a cost-effective and readily available alternative to traditional on-site simulators. However, it is unclear how effective they are as teaching tools. In this study, we evaluated the test scores of fellows who underwent mechanical ventilation training by using a web-based simulator compared with fellows who used an on-site simulator during a mechanical ventilation course.MethodsThis was a nonrandomized controlled trial conducted as part of a mechanical ventilation course that involved 70 first-year critical care fellows. The course was identical except for the simulation technology used. One group of instructors used a traditional on-site simulator, the ASL 5000 Lung Solution (n = 39). The second group was instructed in using a web-based simulator, VentSim (n = 31). Each fellow completed a pre-course test and a post-course test by using a validated, case-based ventilator waveform examination that consisted of 5 questions with a total possible score of 100. The primary outcome was a comparison of the mean scores on the posttest between the 2 groups. The study was designed as a non-inferiority trial with a predetermined margin of 10 points.ResultsThere was no significant difference in the mean ± SD pretest scores between the web-based and the on-site groups (21.1 ± 12.6 and 26.9 ± 13.6 respectively; P = .11). The mean ± SD posttest scores were 45.6 ± 25.0 for the web-based simulator and 43.4 ± 16.5 for on-site simulator (mean difference 2.2; one-sided 95% CI -7.0 to ∞; P non-inferiority = .02 [non-inferiority confirmed]). Changes in mean ± SD scores (posttest - pretest) were 25.9 ± 20.9 for the web-based simulator and 16.5 ± 15.9 for the on-site simulator (mean difference 9.4, one-sided 95% CI 0.9 to ∞; P non-inferiority < .001 [non-inferiority confirmed]).ConclusionsIn the education of first-year critical care fellows on mechanical ventilation waveform analysis, a web-based mechanical ventilation simulator was non-inferior to a traditional on-site mechanical ventilation simulator.Copyright © 2024 by Daedalus Enterprises.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…