-
Observational Study
Texture analysis based on CT for predicting the differentiation of esophageal squamous cancer: An observational study.
- Dawei Wang, Zeyu Shang, Rong Chen, Yue Yang, Yaying Su, Peng Jia, Yanfang Liu, and Fei Yang.
- Department of Thoracic Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
- Medicine (Baltimore). 2024 Sep 20; 103 (38): e39683e39683.
AbstractTo explore the feasibility and application value of texture analysis based on computed tomography (CT) for predicting the differentiation of esophageal squamous cell carcinoma (ESCC). Patients diagnosed with ESCC who underwent chest contrast-enhanced CT before treatment were selected. Based on the pathological results, the patients were stratified into poorly differentiated and moderately well-differentiated groups. FireVoxel software was used to analyze the region of interest based on venous phase CT images. Texture parameters including the mean, median, standard deviation (SD), inhomogeneity, skewness, kurtosis, and entropy were obtained automatically. Differences in the texture parameters and their relationship with the degree of differentiation between the 2 groups were analyzed. The value of CT texture parameters in identifying poor differentiation and moderate-well differentiation of esophageal cancer was analyzed using the ROC curve. A total of 48 patients with ESCC were included, including 24 patients in the poorly differentiated group and 24 patients in the moderate-well-differentiated group. There were negative correlations between SD, inhomogeneity, entropy, and the degree of differentiation of esophageal cancer (P < .05). The correlation of inhomogeneity was the highest (r = -0.505, P < .001). SD, inhomogeneity, and entropy could effectively distinguish between the poorly and moderately well-differentiated groups, with statistically significant differences between the 2 groups (P < .05). The best critical values for SD, inhomogeneity, and entropy were 17.538, 0.017, and 3.917, respectively. The areas under the ROC curve were 0.793, 0.792, and 0.729, respectively, with the SD and inhomogeneity being the best. The application of texture analysis on venous phase CT images holds promise as a method for forecasting the degree of differentiation in esophageal cancers, which could significantly contribute to the preoperative noninvasive evaluation of tumor differentiation.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.