• Shock · Oct 2024

    CIRCULATING HEPARAN SULFATE PROFILES IN PEDIATRIC ACUTE RESPIRATORY DISTRESS SYNDROME.

    • Colin J Sallee, Aline B Maddux, Joseph A Hippensteel, Daniela Markovic, Kaori Oshima, Andreas Schwingshackl, Peter M Mourani, Eric P Schmidt, and Anil Sapru.
    • Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California.
    • Shock. 2024 Oct 1; 62 (4): 496504496-504.

    AbstractIntroduction: Sepsis-induced degradation of endothelial glycocalyx heparan sulfate (HS) contributes to the pulmonary microvascular endothelial injury characteristic of acute respiratory distress syndrome (ARDS) pathogenesis. Our objectives were to (1) examine relationships between plasma indices of HS degradation and protein biomarkers of endothelial injury and (2) identify patient subgroups characterized by distinct profiles of HS degradation in children with ARDS. Methods: We analyzed prospectively collected plasma (2018-2020) from a cohort of invasively mechanically ventilated children (aged >1 month to <18 years) with ARDS. Mass spectrometry characterized and quantified patterns of HS disaccharide sulfation. Protein biomarkers reflective of endothelial injury (e.g., angiopoietin-2, vascular cell adhesion molecule-1, soluble thrombomodulin) were measured with a multiplex immunoassay. Pearson correlation coefficients were used to construct a biomarker correlation network. Centrality metrics detected influential biomarkers (i.e., network hubs). K-means clustering identified unique patient subgroups based on HS disaccharide profiles. Results: We evaluated 36 patients with pediatric ARDS. HS disaccharide sulfation patterns, 6S, NS, and NS2S, positively correlated with all biomarkers of endothelial injury (all P < 0.05) and were classified as network hubs. We identified three patient subgroups, with cluster 3 (n = 5) demonstrating elevated levels of 6S and N-sulfated HS disaccharides. In cluster 3, 60% of children were female and nonpulmonary sepsis accounted for 60% of cases. Relative to cluster 1 (n = 12), cluster 3 was associated with higher oxygen saturation index (P = 0.029) and fewer 28-day ventilator-free days (P = 0.016). Conclusions: Circulating highly sulfated HS fragments may represent emerging mechanistic biomarkers of endothelial injury and disease severity in pediatric ARDS.Copyright © 2024 by the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.