-
- Justin Chin, Megan L Settell, Meagan K Brucker-Hahn, Daniel Lust, Jichu Zhang, Aniruddha R Upadhye, Bruce Knudsen, Ashlesha Deshmukh, Kip A Ludwig, Igor A Lavrov, Andrew R Crofton, Scott F Lempka, Mingming Zhang, and Andrew J Shoffstall.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
- J Neuroimaging. 2024 Nov 1; 34 (6): 646663646-663.
Background And PurposeSpinal cord stimulation (SCS) is approved by the Food and Drug Administration for treating chronic intractable pain in the back, trunk, or limbs through stimulation of the dorsal column. Numerous studies have used swine as an analog of the human spinal cord to better understand SCS and further improve its efficacy. We performed high-resolution imaging of the porcine spinal cord with intact dura mater using micro-computed tomography (μCT) to construct detailed 3-dimensional (3D) visualizations of the spinal cord and characterize the morphology of the dorsal and ventral rootlets.MethodsWe obtained spinal cords from Yorkshire/Landrace crossbred swine (N = 7), stained samples with osmium tetroxide, and performed μCT imaging of the T12-T15 levels at isotropic voxel resolutions ranging from 3.3 to 50 μm. We measured the anatomical morphology using the 3D volumes and compared our results to measurements previously collected from swine and human spinal cords via microdissection techniques in prior literature.ResultsWhile the porcine thoracic-lumbar spinal cord is a popular model for SCS, we highlight multiple notable differences compared to previously published T8-T12 human measurements including rootlet counts (porcine dorsal/ventral: 12.2 ± 2.6, 26.6 ± 3.4; human dorsal/ventral: 5.3 ± 1.3, 4.4 ± 2.4), rootlet angles (porcine ventral-rostral: 161 ± 1°, ventral-caudal: 155 ± 6°, dorsal-rostral: 148 ± 9°, dorsal-caudal: 142 ± 6°; human ventral-rostral: 170 ± 3°, ventral-caudal: 22 ± 10°, dorsal-rostral: 171 ± 3°, dorsal-caudal: 15 ± 7°), and the presence and count of dorsal rootlet bundles.ConclusionsDetailed measurements and highlighted differences between human and porcine spinal cords can inform variations in modeling and electrophysiological experiments between the two species. In contrast to other approaches for measuring the spinal cord and rootlet morphology, our method keeps the dura intact, reducing potential artifacts from dissection.© 2024 The Author(s). Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.