-
Yonsei medical journal · Oct 2024
Need for Transparency and Clinical Interpretability in Hemorrhagic Stroke Artificial Intelligence Research: Promoting Effective Clinical Application.
- Chae Young Lim, Beomseok Sohn, Minjung Seong, Eung Yeop Kim, Sung Tae Kim, and So Yeon Won.
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Yonsei Med. J. 2024 Oct 1; 65 (10): 611618611-618.
PurposeThis study aimed to evaluate the quality of artificial intelligence (AI)/machine learning (ML) studies on hemorrhagic stroke using the Minimum Information for Medical AI Reporting (MINIMAR) and Minimum Information About Clinical Artificial Intelligence Modeling (MI-CLAIM) frameworks to promote clinical application.Materials And MethodsPubMed, MEDLINE, and Embase were searched for AI/ML studies on hemorrhagic stroke. Out of the 531 articles found, 29 relevant original research articles were included. MINIMAR and MI-CLAIM scores were assigned by two experienced radiologists to assess the quality of the studies.ResultsWe analyzed 29 investigations that utilized AI/ML in the field of hemorrhagic stroke, involving a median of 224.5 patients. The majority of studies focused on diagnostic outcomes using computed tomography scans (89.7%) and were published in computer science journals (48.3%). The overall adherence rates to reporting guidelines, as assessed through the MINIMAR and MI-CLAIM frameworks, were 47.6% and 46.0%, respectively. In MINIMAR, none of the studies reported the socioeconomic status of the patients or how missing values had been addressed. In MI-CLAIM, only two studies applied model-examination techniques to improve model interpretability. Transparency and reproducibility were limited, as only 10.3% of the studies had publicly shared their code. Cohen's kappa between the two radiologists was 0.811 and 0.779 for MINIMAR and MI-CLAIM, respectively.ConclusionThe overall reporting quality of published AI/ML studies on hemorrhagic stroke is suboptimal. It is necessary to incorporate model examination techniques for interpretability and promote code openness to enhance transparency and increase the clinical applicability of AI/ML studies.© Copyright: Yonsei University College of Medicine 2024.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.