• Hippokratia · Jan 2024

    An artificial neural network approach to diagnose and predict liver dysfunction and failure in the critical care setting.

    • S Pappada, B Sathelly, J Schmieder, A Javaid, M Owais, B Cameron, S Khuder, G Kostopanagiotou, R Smith, T Sparkle, and T Papadimos.
    • Department of Anesthesiology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.
    • Hippokratia. 2024 Jan 1; 28 (1): 1101-10.

    BackgroundDetecting liver dysfunction/failure in the intensive care unit poses a challenge as individuals afflicted with these conditions often appear symptom-free, thereby complicating early diagnoses and contributing to unfavorable patient outcomes. The objective of this endeavor was to improve the chances of early diagnosis of liver dysfunction/failure by creating a predictive model for the critical care setting. This model has been designed to produce an index that reflects the probability of severe liver dysfunction/failure for patients in intensive care units, utilizing machine learning techniques.Materials And MethodsThis effort used comprehensive open-access patient databases to build and validate machine learning-based models for predicting the likelihood of severe liver dysfunction/failure. Two artificial neural network model architectures that derived a novel 0-100 Liver Failure Risk Index were developed and validated using the comprehensive patient databases. Data used to train and develop the models included clinical (patient vital signs) and laboratory results related to liver function which included liver function test results. The performance of the developed models was compared in terms of sensitivity, specificity, and the mean lead time to diagnosis.ResultsThe best model performance demonstrated an 83.3 % sensitivity and a specificity of 77.5 % in diagnosing severe liver dysfunction/failure. This model accurately identified these patients a median of 17.5 hours before their clinical diagnosis, as documented in their electronic health records. The predictive diagnostic capability of the developed models is crucial to the intensive care unit setting, where treatment and preventative interventions can be made to avoid severe liver dysfunction/failure.ConclusionOur machine learning approach facilitates early and timely intervention in the hepatic function of critically ill patients by their healthcare providers to prevent or minimize associated morbidity and mortality. HIPPOKRATIA 2024, 28 (1):1-10.Copyright 2024, Hippokratio General Hospital of Thessaloniki.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.