• Cochrane Db Syst Rev · Mar 2019

    Meta Analysis

    Biomedical risk assessment as an aid for smoking cessation.

    • Carole Clair, Yolanda Mueller, Jonathan Livingstone-Banks, Bernard Burnand, Jean-Yves Camain, Jacques Cornuz, Myriam Rège-Walther, Kevin Selby, and Raphaël Bize.
    • Center for Primary Care and Public Health, University of Lausanne, Rue du Bugnon 44, Lausanne, Switzerland, 1011.
    • Cochrane Db Syst Rev. 2019 Mar 26; 3 (3): CD004705CD004705.

    BackgroundA possible strategy for increasing smoking cessation rates could be to provide smokers with feedback on the current or potential future biomedical effects of smoking using, for example, measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer or other diseases.ObjectivesThe main objective was to determine the efficacy of providing smokers with feedback on their exhaled CO measurement, spirometry results, atherosclerotic plaque imaging, and genetic susceptibility to smoking-related diseases in helping them to quit smoking.Search MethodsFor the most recent update, we searched the Cochrane Tobacco Addiction Group Specialized Register in March 2018 and ClinicalTrials.gov and the WHO ICTRP in September 2018 for studies added since the last update in 2012.Selection CriteriaInclusion criteria for the review were: a randomised controlled trial design; participants being current smokers; interventions based on a biomedical test to increase smoking cessation rates; control groups receiving all other components of intervention; and an outcome of smoking cessation rate at least six months after the start of the intervention.Data Collection And AnalysisWe used standard methodological procedures expected by Cochrane. We expressed results as a risk ratio (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate, we pooled studies using a Mantel-Haenszel random-effects method.Main ResultsWe included 20 trials using a variety of biomedical tests interventions; one trial included two interventions, for a total of 21 interventions. We included a total of 9262 participants, all of whom were adult smokers. All studies included both men and women adult smokers at different stages of change and motivation for smoking cessation. We judged all but three studies to be at high or unclear risk of bias in at least one domain. We pooled trials in three categories according to the type of biofeedback provided: feedback on risk exposure (five studies); feedback on smoking-related disease risk (five studies); and feedback on smoking-related harm (11 studies). There was no evidence of increased cessation rates from feedback on risk exposure, consisting mainly of feedback on CO measurement, in five pooled trials (RR 1.00, 95% CI 0.83 to 1.21; I2 = 0%; n = 2368). Feedback on smoking-related disease risk, including four studies testing feedback on genetic markers for cancer risk and one study with feedback on genetic markers for risk of Crohn's disease, did not show a benefit in smoking cessation (RR 0.80, 95% CI 0.63 to 1.01; I2 = 0%; n = 2064). Feedback on smoking-related harm, including nine studies testing spirometry with or without feedback on lung age and two studies on feedback on carotid ultrasound, also did not show a benefit (RR 1.26, 95% CI 0.99 to 1.61; I2 = 34%; n = 3314). Only one study directly compared multiple forms of measurement with a single form of measurement, and did not detect a significant difference in effect between measurement of CO plus genetic susceptibility to lung cancer and measurement of CO only (RR 0.82, 95% CI 0.43 to 1.56; n = 189).Authors' ConclusionsThere is little evidence about the effects of biomedical risk assessment as an aid for smoking cessation. The most promising results relate to spirometry and carotid ultrasound, where moderate-certainty evidence, limited by imprecision and risk of bias, did not detect a statistically significant benefit, but confidence intervals very narrowly missed one, and the point estimate favoured the intervention. A sensitivity analysis removing those studies at high risk of bias did detect a benefit. Moderate-certainty evidence limited by risk of bias did not detect an effect of feedback on smoking exposure by CO monitoring. Low-certainty evidence, limited by risk of bias and imprecision, did not detect a benefit from feedback on smoking-related risk by genetic marker testing. There is insufficient evidence with which to evaluate the hypothesis that multiple types of assessment are more effective than single forms of assessment.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…