-
- Kaipeng Chen, Liqing Luo, Ye Tan, and Gengcong Chen.
- Department of Health Care, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China.
- J Eval Clin Pract. 2024 Oct 21.
BackgroundMedical diagnosis plays a critical role in our daily lives. Every day, over 10 billion cases of both mental and physical health disorders are diagnosed and reported worldwide. To diagnose these disorders, medical practitioners and health professionals employ various assessment tools. However, these tools often face scrutiny due to their complexity, prompting researchers to increase their experimental parameters to provide accurate justifications. Additionally, it is essential for professionals to properly justify, interpret, and analyse the results from these prediction tools.MethodsThis research paper explores the use of artificial intelligence and advanced analytics in developing Clinical Decision Support Systems (CDSS). These systems are capable of diagnosing and detecting patterns of various medical disorders. Various machine learning algorithms contribute to building these assessment tools, with the Network Pattern Recognition (NEPAR) algorithm being the first to aid in developing CDSS. Over time, researchers have recognised the value of machine learning-based prediction models in successfully justifying medical diagnoses.ResultsThe proposed CDSS models have demonstrated the ability to diagnose mental disorders with an accuracy of up to 89% using only 28 questions, without requiring human input. For physical health issues, additional parameters are used to enhance the accuracy of CDSS models.ConclusionsConsequently, medical professionals are increasingly relying on these machine learning-based CDSS models, utilising these tools to improve medical diagnosis and assist in decision-making. The different cross-validation values are considered to remove the data biasness.© 2024 John Wiley & Sons Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.