• J Eval Clin Pract · Oct 2024

    Chest x-ray images: transfer learning model in COVID-19 detection.

    • Siqi Mao, Saltanat Kulbayeva, and Mikhail Osadchuk.
    • Department of Statistics, Florida State University, Tallahassee, Florida, USA.
    • J Eval Clin Pract. 2024 Oct 27.

    Rationale, Aims And ObjectivesThis research aims to develop an effective algorithm for diagnosing COVID-19 in chest X-rays using the transfer learning method and support vector machines.MethodIn total, data was collected from 10 clinics, including both large city hospitals and smaller medical institutions. This ensured a diverse range of geographical and demographic information in the sample. An extensive data set was collected, including 10,000 chest X-ray images. 5000 images represent normal cases, 3993 images represent pneumonia cases, and 1007 images represent COVID-19 cases. Machine learning methods were applied to develop a classification model, and the results were compared with seven state-of-the-art models and a lightweight CNN architecture.ResultsThe results showed that the proposed method achieves high accuracy values (Accuracy): 0.95 for COVID-19, 0.89 for pneumonia, and 0.92 for normal images (p < 0.05). Comparison with other models demonstrates statistically significant superiority of our method in accuracy across all three classes. The EfficientNet-B0 model surpasses our method only in accuracy for normal images with p < 0.01, confirming the advantages of our method. Our method demonstrates high sensitivity values (Sensitivity): 0.96 for COVID-19, 0.88 for pneumonia, and 0.93 for normal images (p < 0.05), outperforming most of the compared models. Correlation analysis showed Pearson coefficients of 0.92, 0.89, and 0.94 for COVID-19, pneumonia, and normal images, respectively, confirming a high degree of consistency between predicted and true class labels. In addition, the model was validated on external datasets to assess its generalizability. This validation confirmed its high level of effectiveness in a variety of clinical settings.ConclusionThis study confirms the importance of applying machine learning methods in medical applications and opens new perspectives for early diagnosis of infectious diseases. The practical application of the obtained results can enhance the efficiency of diagnosis and control the spread of COVID-19, as well as contribute to the development of innovative methods in medical practice.© 2024 John Wiley & Sons Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.