-
Anesthesia and analgesia · Oct 2024
Defining Postinduction Hemodynamic Instability With an Automated Classification Model.
- Eline Kho, Rogier V Immink, Bjorn J P van der Ster, Ward H van der Ven, Jimmy Schenk, Markus W Hollmann, Johan T M Tol, Lotte E Terwindt, VlaarAlexander P JAPJDepartment of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands., and Denise P Veelo.
- From the Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
- Anesth. Analg. 2024 Oct 25; 140 (2): 444452444-52.
BackgroundPostinduction hypotension (PIH) may be associated with increased morbidity and mortality. In earlier studies, the definition of PIH is solely based on different absolute or relative thresholds. However, the time-course (eg, how fast blood pressure drops during induction) is rarely incorporated, whereas it might represent the hemodynamic instability of a patient. We propose a comprehensive model to distinguish hemodynamically unstable from stable patients by combining blood pressure thresholds with the magnitude and speed of decline.MethodsThis prospective study included 375 adult elective noncardiac surgery patients. Noninvasive blood pressure was continuously measured between 5 minutes before up to 15 minutes after the first induction agent had been administered. An expert panel rated whether the patient experienced clinically relevant hemodynamic instability or not. Interrater correlation coefficient and intraclass correlation were computed to check for consistency between experts. Next, an automated classification model for clinically relevant hemodynamic instability was developed using mean, maximum, minimum systolic, mean, diastolic arterial blood pressure (SAP, MAP, and DAP, respectively) and their corresponding time course of decline. The model was trained and tested based on the hemodynamic instability labels provided by the experts.ResultsIn total 78 patients were classified as having experienced hemodynamic instability and 279 as not. The hemodynamically unstable patients were significantly older (7 years, 95% confidence interval (CI), 4-11, P < .001), with a higher prevalence of chronic obstructive pulmonary disease (COPD) (3% higher, 95% CI, 1-8, P = .036). Before induction, hemodynamically unstable patients had a higher SAP (median (first-third quartile): 161 (145-175) mm Hg vs 150 (134-166) mm Hg, P < .001) compared to hemodynamic stable patients. Interrater agreement between experts was 0.92 (95% CI, 0.89-0.94). The random forest classifier model showed excellent performance with an area under the receiver operating curve (AUROC) of 0.96, a sensitivity of 0.84, and specificity of 0.94.ConclusionsBased on the high sensitivity and specificity, the developed model is able to differentiate between clinically relevant hemodynamic instability and hemodynamic stable patients. This classification model will pave the way for future research concerning hemodynamic instability and its prevention.Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Anesthesia Research Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.