-
- Balaram Khamari and Eswarappa Pradeep Bulagonda.
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India.
- Med Princ Pract. 2024 Oct 29: 1171-17.
AbstractAntimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR.© 2024 The Author(s). Published by S. Karger AG, Basel.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.