-
- Shaomei Lin, Mingzhu Chen, Shifeng Lin, Xiaowei Huang, Wanqiong Chen, and Shuifa Wu.
- Department of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China.
- Medicine (Baltimore). 2024 Nov 1; 103 (44): e40391e40391.
AbstractAsthma is a serious public health challenge around the world. Recent studies into traditional Chinese medicine preparations for asthma have yielded promising findings regarding Bailing Capsule's potential in bronchial asthma prevention and treatment. This study aims to initially clarify the potential mechanism of Bailing Capsule in the treatment of asthma using network pharmacology and in vitro experimental approaches. Network pharmacology was adopted to detect the active ingredients of Bailing Capsule via Traditional Chinese Medicine Systems Pharmacology Database, and the key targets and signaling pathways in the treatment of asthma were predicted. Docking and molecular dynamics simulations were conducted to verify the most important interactions formed by these probes within different regions of the binding site. The predicted targets were validated in lipopolysaccharide-induced 16HBE cell experiment. Seven active ingredients were screened from Bailing Capsule, 294 overlapping targets matched with asthma were considered potential therapeutic targets, such as SRC, TP53, STAT3, and E1A binding protein P300. The main functional pathways involving these key targets include phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, renin-angiotensin system and other signaling pathways, which were mainly involved in the inflammatory response, apoptosis, and xenobiotic stimulus. Moreover, molecular docking showed that Cerevisterol have higher affinity for SRC, TP53, STAT3, and E1A binding protein P300 than other main active components, which is close to the docking results of the co-crystallized ligands to proteins. Consequently, Cerevisterol was selected for molecular dynamics simulation and the results show that Cerevisterol can bind most tightly to SRC, TP53, and STAT3. Bailing Capsule can promote the growth of 16HBE cell, reduce the production of IL-4, TNF-α and IL-6, and down-regulate the levels of SRC and STAT3 mRNA. This study preliminarily reveals the potential mechanism of Bailing Capsule against asthma with the aid of network pharmacology and in vitro cell experiment, which provided reference and guidance for in-depth research and clinical application.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.