-
- Ming Ding, Zhihao Su, Daoyu Wang, Lan Mo, Jiong Mei, Wanju Sun, Shuang Li, and Ming Ni.
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi 214023, China. Electronic address: dingming2017@163.com.
- Injury. 2024 Oct 23; 55 (12): 111979111979.
ObjectiveThis study aims to investigate the biomechanical characteristics of non-anatomical reduction and different screw positions on the stability of Pauwels type III femoral neck fractures.MethodsThree-dimensional finite element models of femoral neck fractures were constructed using CT images. Four types of internal fixation methods were simulated, including biplane double-supported screw fixation (BDSF), three inverted triangular parallel cannulated screws (3CS), new parallel cannulated screws with posterior screws moving down (New 3CS), and two parallel cannulated screws (2CS). von Mises stress and total displacement were compared between the fracture models after the femoral head was subjected to an axial load of 2100 N. Stress and displacement data for the implants and the femur were recorded for each fixation method and compared.ResultsThe results demonstrated that positive reduction of a Pauwels type III femoral neck fracture provided greater stability than neutral or negative reduction. Specifically, the BDSF group showed the lowest maximum von Mises stress in the femur (17.66 MPa) in positive reduction, compared to 3CS (21.08 MPa), New 3CS (22.14 MPa), and 2CS (36.57 MPa). The total displacement of positive reduction in the BDSF group was 0.3143 mm, which was lower than in the 3CS (0.3498 mm), New 3CS (0.3343 mm), and 2CS (0.4533 mm) groups. The stress distribution in the positive support reduction group was lower than that of the other groups, indicating better load distribution. Among the three-screw fixation methods, the New 3CS system exhibited the highest stress in the screws (with a peak of 28.62 MPa), while the 2CS group displayed the highest stresses overall, both in the femur and the screws.ConclusionFor Pauwels type III femoral neck fractures, a positive support reduction with BDSF fixation exhibited superior biomechanical performance than negative reduction. Based on the finite element analysis conducted in this study, the positive support reduction with BDSF fixation can enhance fixation stability, suggesting that non-anatomical reduction is recommended.Copyright © 2024. Published by Elsevier Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.