• Anesthesia and analgesia · Nov 2024

    Development and Validation of a Predictive Model for Maternal Cardiovascular Morbidity Events in Patients With Hypertensive Disorders of Pregnancy.

    • Marie-Louise Meng, Yuqi Li, Matthew Fuller, Quinn Lanners, Ashraf S Habib, Jerome J Federspiel, Johanna Quist-Nelson, Svati H Shah, Michael Pencina, Kim Boggess, Vijay Krishnamoorthy, and Matthew Engelhard.
    • From the Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
    • Anesth. Analg. 2024 Nov 6.

    BackgroundHypertensive disorders of pregnancy (HDP) are a major contributor to maternal morbidity, mortality, and accelerated cardiovascular (CV) disease. Comorbid conditions are likely important predictors of CV risk in pregnant people. Currently, there is no way to predict which people with HDP are at risk of acute CV complications. We developed and validated a predictive model for all CV events and for heart failure, renal failure, and cerebrovascular events specifically after HDP.MethodsModels were created using the Premier Healthcare Database. The inclusion criteria for the model dataset were delivery with an HDP with discharge from October 1, 2015 to December 31, 2020. Machine learning methods were used to derive predictive models of CV events occurring during delivery hospitalization (Index Model) or during readmission (Readmission Model) using a training set (60%) to estimate model parameters, a validation set (20%) to tune model hyperparameters and select a final model, and a test set (20%) to evaluate final model performance.ResultsThe total model cohort consisted of 553,658 deliveries with an HDP. A CV event occurred in 6501 (1.2%) of the delivery hospitalizations. Multilabel neural networks were selected for the Index Model and Readmission Model due to favorable performance compared to alternatives. This approach is designed for prediction of multiple events that share risk factors and may cooccur. The Index Model predicted all CV events with area under the receiver operating curve (AUROC) 0.878 and average precision (AP) 0.239 (cerebrovascular events: AUROC 0.941, heart failure: AUROC 0.898, and renal failure: AUROC 0.885). With a positivity threshold set to achieve ≥90% sensitivity, model specificity was 65.0%, 83.5%, 68.6%, and 65.6% for predicting all CV events, cerebrovascular events, heart failure, and renal failure, respectively. CV events within 1 year of delivery occurred in 3018 (0.6%) individuals. The Readmission Model predicted all CV events with AUROC 0.717 and AP 0.022 (renal failure: AUROC 0.748, heart failure: AUROC 0.734, and cerebrovascular events AUROC 0.698). Feature importance analysis indicated that the presence of chronic renal disease, cardiac disease, pulmonary hypertension, and preeclampsia with severe features had the greatest effect on the prediction of CV events.ConclusionsAmong individuals with HDP, our multilabel neural network model predicted CV events at delivery admission with good classification and events within 1 year of delivery with fair classification.Copyright © 2024 International Anesthesia Research Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…