• BMJ open · Jul 2024

    Effects of interacting with a large language model compared with a human coach on the clinical diagnostic process and outcomes among fourth-year medical students: study protocol for a prospective, randomised experiment using patient vignettes.

    • Juliane E Kämmer, Wolf E Hautz, Gert Krummrey, Thomas C Sauter, Dorothea Penders, Tanja Birrenbach, and Nadine Bienefeld.
    • Department of Emergency Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland juliane.kaemmer@unibe.ch.
    • BMJ Open. 2024 Jul 18; 14 (7): e087469e087469.

    IntroductionVersatile large language models (LLMs) have the potential to augment diagnostic decision-making by assisting diagnosticians, thanks to their ability to engage in open-ended, natural conversations and their comprehensive knowledge access. Yet the novelty of LLMs in diagnostic decision-making introduces uncertainties regarding their impact. Clinicians unfamiliar with the use of LLMs in their professional context may rely on general attitudes towards LLMs more broadly, potentially hindering thoughtful use and critical evaluation of their input, leading to either over-reliance and lack of critical thinking or an unwillingness to use LLMs as diagnostic aids. To address these concerns, this study examines the influence on the diagnostic process and outcomes of interacting with an LLM compared with a human coach, and of prior training vs no training for interacting with either of these 'coaches'. Our findings aim to illuminate the potential benefits and risks of employing artificial intelligence (AI) in diagnostic decision-making.Methods And AnalysisWe are conducting a prospective, randomised experiment with N=158 fourth-year medical students from Charité Medical School, Berlin, Germany. Participants are asked to diagnose patient vignettes after being assigned to either a human coach or ChatGPT and after either training or no training (both between-subject factors). We are specifically collecting data on the effects of using either of these 'coaches' and of additional training on information search, number of hypotheses entertained, diagnostic accuracy and confidence. Statistical methods will include linear mixed effects models. Exploratory analyses of the interaction patterns and attitudes towards AI will also generate more generalisable knowledge about the role of AI in medicine.Ethics And DisseminationThe Bern Cantonal Ethics Committee considered the study exempt from full ethical review (BASEC No: Req-2023-01396). All methods will be conducted in accordance with relevant guidelines and regulations. Participation is voluntary and informed consent will be obtained. Results will be published in peer-reviewed scientific medical journals. Authorship will be determined according to the International Committee of Medical Journal Editors guidelines.© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.