-
- Lars Grant, Magueye Diagne, Rafael Aroutiunian, Devin Hopkins, Tian Bai, Flemming Kondrup, and Gregory Clark.
- Department of Emergency Medicine, McGill University, Montreal, QC, Canada. lars.grant@mcgill.ca.
- CJEM. 2024 Nov 19.
Study ObjectiveThis study investigates the potential to improve emergency department (ED) triage using machine learning models by comparing their predictive performance with the Canadian Triage Acuity Scale (CTAS) in identifying the need for critical care within 12 h of ED arrival.MethodsThree machine learning models (LASSO regression, gradient-boosted trees, and a deep learning model with embeddings) were developed using retrospective data from 670,841 ED visits to the Jewish General Hospital from June 2012 to Jan 2021. The model outcome was the need for critical care within the first 12 h of ED arrival. Metrics, including the areas under the receiver-operator characteristic curve (ROC) and precision-recall curve (PRC) were used for performance evaluation. Shapley additive explanation scores were used to compare predictor importance.ResultsThe three machine learning models (deep learning, gradient-boosted trees and LASSO regression) had areas under the ROC of 0.926 ± 0.003, 0.912 ± 0.003 and 0.892 ± 0.004 respectively, and areas under the PRC of 0.27 ± 0.01, 0.24 ± 0.01 and 0.23 ± 0.01 respectively. In comparison, the CTAS score had an area under the ROC of 0.804 ± 0.006 and under the PRC of 0.11 ± 0.01. The predictors of most importance were similar between the models.ConclusionsMachine learning models outperformed CTAS in identifying, at the point of ED triage, patients likely to need early critical care. If validated in future studies, machine learning models such as the ones developed here may be considered for incorporation in future revisions of the CTAS triage algorithm, potentially improving discrimination and reliability.© 2024. The Author(s), under exclusive licence to the Canadian Association of Emergency Physicians (CAEP)/ Association Canadienne de Médecine d'Urgence (ACMU).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.