-
- Gurueswar Nagarajan and Yumin Zhang.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD, 20817, USA.
- J Headache Pain. 2024 Nov 22; 25 (1): 203203.
BackgroundPost-traumatic headache (PTH) is a common comorbid symptom affecting at least one-third of patients with mild traumatic brain injury (mTBI). While neuroinflammation is known to contribute to the development of PTH, the cellular mechanisms in the trigeminal system crucial for understanding the pathogenesis of PTH remain unclear.MethodsA non-invasive repetitive mTBI (4 times with a 24-h interval) was induced in male mice and effect of mTBI was tested on either bregma or pre-bregma position on the head. Periorbital allodynia and spontaneous pain behavior were assessed using von Frey test and grimace score, respectively. Quantitative PCR was used to assess extent of mTBI pathology. RNA sequencing was performed to obtain transcriptomic profile of the trigeminal ganglion (TG), trigeminal nucleus caudalis (Sp5C) and periaqueductal gray (PAG) at 7 days post-TBI. Subsequently, quantitative PCR, in situ hybridization and immunohistochemistry were used to examine mRNA and protein expression of glia specific markers and pain associated molecules.ResultsThe repetitive impacts at the bregma, but not pre-bregma site led to periorbital hypersensitivity, which was correlated with enhanced inflammatory gene expression in multiple brain regions. RNA sequencing revealed mTBI induced distinct transcriptomic profiles in the peripheral TG and central Sp5C and PAG. Using gene set enrichment analysis, positive enrichment of non-neuronal cells in the TG and neuroinflammation in the Sp5C were identified to be essential in the pathogenesis of PTH. In situ assays also revealed that gliosis of satellite glial cells in the TG and astrocytes in the Sp5C were prominent days after injury. Furthermore, immunohistochemical study revealed a close interaction between activated microglia and reactive astrocytes correlating with increased calretinin interneurons in the Sp5C.ConclusionsTranscriptomics analysis indicated that non-neuronal cells in peripheral TG and successive in situ assays revealed that glia in the central Sp5C are crucial in modulating headache-like symptoms. Thus, selective targeting of glia cells can be a therapeutic strategy for PTH attributed to repetitive mTBI.© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.