• Lancet neurology · Dec 2024

    Multicenter Study

    Sensitivity and specificity of a seed amplification assay for diagnosis of multiple system atrophy: a multicentre cohort study.

    • Yihua Ma, Carly M Farris, Sandrina Weber, Sebastian Schade, Hieu Nguyen, Alexandra Pérez-Soriano, Darly M Giraldo, Manel Fernández, Marta Soto, Ana Cámara, Celia Painous, Esteban Muñoz, Francesc Valldeoriola, Maria J Martí, Jordi Clarimon, Pekka Kallunki, Thong Chi Ma, Roy N Alcalay, Bárbara Fernandez Gomes, Kaj Blennow, Henrik Zetterberg, Julius Constantinescu, David Mengel, Vaibhavi Kadam, Piero Parchi, Kathrin Brockmann, Thomas F Tropea, Andrew Siderowf, Matthis Synofzik, Un Jung Kang, Yaroslau Compta, Per Svenningsson, Brit Mollenhauer, and Luis Concha-Marambio.
    • Amprion, San Diego, CA, USA.
    • Lancet Neurol. 2024 Dec 1; 23 (12): 122512371225-1237.

    BackgroundThe pathological hallmarks of multiple system atrophy and Parkinson's disease are, respectively, misfolded-α-synuclein-laden glial cytoplasmic inclusions and Lewy bodies. CSF-soluble misfolded α-synuclein aggregates (seeds) are readily detected in people with Parkinson's disease by α-synuclein seed amplification assay (synSAA), but identification of seeds associated with multiple system atrophy for diagnostic purposes has proven elusive. We aimed to assess whether a novel synSAA could reliably distinguish seeds from Lewy bodies and glial cytoplasmic inclusions.MethodsIn this multicentre cohort study, a novel synSAA that multiplies and detects seeds by fluorescence was used to analyse masked CSF and brain samples from participants with either clinically diagnosed or pathology-confirmed multiple system atrophy, Parkinson's disease, dementia with Lewy bodies, isolated rapid eye movement sleep behaviour disorder (IRBD), disorders that were not synucleinopathies, or healthy controls. Participants were from eight available cohorts from seven medical centres in four countries: New York Brain Bank, New York, USA (NYBB); University of Pennsylvania, Philadelphia, PA, USA (UPENN); Paracelsus-Elena-Klinik, Kassel, Germany (DeNoPa and KAMSA); Hospital Clinic Barcelona, Spain (BARMSA); Universität Tübingen, Tübingen, Germany (EKUT); Göteborgs Universitet, Göteborgs, Sweden (UGOT); and Karolinska Institutet, Stockholm, Sweden (KIMSA). Clinical cohorts were classified for expected diagnostic accuracy as either research (longitudinal follow-up visits) or real-life (single visit). Sensitivity and specificity were estimated according to pathological (gold standard) and clinical (reference standard) diagnoses.FindingsIn 23 brain samples (from the NYBB cohort), those containing Lewy bodies were synSAA-positive and produced high fluorescence amplification patterns (defined as type 1); those containing glial cytoplasmic inclusions were synSAA-positive and produced intermediate fluorescence (defined as type 2); and those without α-synuclein pathology produced below-threshold fluorescence and were synSAA-negative. In 21 pathology-confirmed CSF samples (from the UPENN cohort), those with Lewy bodies were synSAA-positive type 1; those with glial cytoplasmic inclusions were synSAA-positive type 2; and those with four-repeat tauopathy were synSAA-negative. In the DeNoPa research cohort (which had no samples from people with multiple system atrophy), the novel synSAA had sensitivities of 95% (95% CI 88-99) for 80 participants with Parkinson's disease and 95% (76-100) for 21 participants with IRBD, and a specificity of 95% (86-99) for 60 healthy controls. Overall (combining BARMSA, EKUT, KAMSA, UGOT, and KIMSA cohorts that were enriched for cases of multiple system atrophy), the novel synSAA had 87% sensitivity for multiple system atrophy (95% CI 80-93) and specificity for type 2 seeds was 77% (67-85). For participants with multiple system atrophy just in research cohorts (BARMSA and EKUT), the novel synSAA had a sensitivity of 84% (95% CI 71-92) and a specificity for type 2 seeds of 87% (74-95), whereas cases from real-life cohorts (KAMSA, KIMSA, and UGOT) had a sensitivity of 91% (95% CI 80-97) but a decreased specificity for type 2 seeds of 68% (53-81).InterpretationThe novel synSAA produced amplification patterns that enabled the identification of underlying α-synuclein pathology, showing two levels of fluorescence that corresponded with different pathological hallmarks of synucleinopathy. The synSAA might be useful for early diagnosis of synucleinopathies in clinical trials, and potentially for clinical use, but additional formal validation work is needed.FundingMichael J Fox Foundation for Parkinson's Research, Amprion.Copyright © 2024 Elsevier Ltd. All rights reserved, including those for text and data mining, AI training, and similar technologies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.