• J Eval Clin Pract · Feb 2025

    Multivariate Brain Tumor Detection in 3D-MRI Images Using Optimised Segmentation and Unified Classification Model.

    • V Anitha.
    • Department of Electronics and Communication Engineering, Sri Muthukumaran Institute of Technology, Chennai, Tamil Nadu, India.
    • J Eval Clin Pract. 2025 Feb 1; 31 (1): e14229e14229.

    Aims And Objectives3D Magnetic Resonance Imaging (3D-MRI) analysis of brain tumours is an important tool for gathering information needed for diagnosis and disease therapy planning. However, during the brain tumor segmentation process existing techniques have segmentation error while identifying tumor location and extended tumor regions due to improper extraction of initial contour points and overlapping tissue intensity distributions.MethodsHence a novel Duo-step optimised Pyramidal SegNet has been proposed in which multiscale contrast convolutional attention module improve contrast and the tumor edge has been extracted based on location and tumor extension using Duo-step darning needle optimisation that set initial contour points and pyramidal level set segmentation with ancillary Sobel edge operator extract the tumour region from all 2D MRI image slices without having overlapped tissue intensity distributions thereby effectively minimises segmentation error. Furthermore, during the classification of segmented tumor region based on its type, irregular planimetric volume and low interrater concordance of multivariate brain tumors reduce the detection rate due to neglecting the extraction of contextual and symmetric features. Hence 3D brain Unified NN has been proposed in which adaptive multi-layer deep unified encoder module extract 3D contextual and symmetric features by measuring the difference from the observed region and contralateral region and the multivariate brain tumors are classified with boosted Sparse Categorical Cross entropy loss calculation to demonstrate high detection rate.Results And ConclusionThe results obtained for the BraTS2020 and Brain Tumor Detection 2020 data sets showed that the proposed model outperforms existing techniques with excellent precision of 97%, 97.5%, recall of 99%, 97.8%, and accuracy of 95.7%, 98.4%, respectively.© 2024 John Wiley & Sons Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.