• Postgraduate medicine · Nov 1976

    Acute acid-base disorders. 2. Specific disturbances.

    • A P Quintanilla.
    • Postgrad Med. 1976 Nov 1;60(5):75-83.

    AbstractEvaluation of the acid-base status of the body requires measurement of bicarbonate (total carbon dioxide) concentration, pH, and partial pressure of CO2 in arterial blood. Calculation of standard bicarbonate and base excess or deficit is not necessary. The normal concentration of free hydrogen ions (H+) is approximately 40 millimoles/liter, which is equivalent to a pH of 7.4. The normal load of fixed acids is 50 to 80 millimoles in 24 hours. A steady state is maintained by excretion of an equal amount of H+ by the kidneys, which at the same time regenerate bicarbonate to replenish buffer stores. Renal excretion of H+ is in the form of titratable acid and ammonium. Synthesis of ammonia can increase severalfold under the stimulus of acidosis. This is the chief mechanism of long-term compensation. Metabolic acidosis can be due to an excessive acid load (endogenous or exogenous), impaired renal excretion of H+, or bicarbonate loss. Determination of the "anion gap" (unmeasured anions) helps to establish the mechanism of acidosis. Acidosis with a normal anion gap is due to either bicarbonate loss or ingestion of certain chloride salts. A gap larger than normal indicates the presence in the body of acids other than acidfying chloride salts. Management of metabolic acidosis requires accurate diagnosis, clear understanding of the mechansim, and individualized treatment. Metabloic alkalosis is due to loss of H+ (usually from stomach or kidneys) or ingestion of alkali. Measurement of urinary chloride helps establish the mechanism of alkalosis. In saline-responsive alkalosis, the urinary chloride level is very low. This is usually due to gastric loss of H+, and the condition responds to administration of saline solution. When the urinary chloride level is only moderately low, the alkalosis is probably not due to gastric loss of H+. This form of alkalosis (saline-resistant) does not respond well to administration of saline solution and requires use of potassium in treatment. Apprpriate compensatory responses to acidosis or alkalosis are critical to survival. Compensation for metabloic acidosis consists of hyperventilation and enhanced renal excretion of H+, chiefly as ammonium. In metabolic alkalosis, compensation is mainly renal excretion of bicarbonate. Respiratory acidosis is due to alveolar hypoventilation. In chronic situations, a compensatory rise in serum bicarbonate concentration is expected. Management consists of treatment of the cause of hypoventilation. Respiratory alkalosis is due to hyperventilation. Treatment requires identification and correction of the cause of hyperventilation.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.