• Am. J. Respir. Crit. Care Med. · Nov 2024

    Single-Cell RNA Sequencing to Guide Autologous Preterm Cord Mesenchymal Stromal Cell-Therapy.

    • Chanèle Cyr-Depauw, Ivana Mižik, David P Cook, Flore Lesage, Arul Vadivel, Laurent Renesme, Yupu Deng, Shumei Zhong, Pauline Bardin, Liqun Xu, Marius A Möbius, Jenny Marzahn, Daniel Freund, Duncan J Stewart, Barbara C Vanderhyden, Mario Rüdiger, and Bernard Thébaud.
    • Ottawa Hospital Research Institute, Sinclair Centre for Regenerative Medicine, Ottawa, Ontario, Canada.
    • Am. J. Respir. Crit. Care Med. 2024 Nov 25.

    RationaleThe chronic lung disease bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity (<28 weeks of gestation). Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) represent an opportunity for autologous cell-therapy, as UC-MSCs have been shown to improve lung function and structure in experimental BPD. However, characterization and repair capacity of UC-MSCs derived from donors with pregnancy-related complications associated with prematurity remain unexplored.ObjectivesTo characterize UC-MSCs' transcriptome and determine if pregnancy-related complications (preeclampsia and chorioamnionitis) alter their therapeutic potential.MethodsSingle-cell RNA sequencing (scRNA-seq) was used to compare the transcriptome of UC-MSCs derived from five term donors, 16 preterm donors, and human neonatal dermal fibroblasts (HNDFs, control cells of mesenchymal origin), and correlated with their therapeutic potential in experimental BPD. Using publicly available neonatal lung single-nuclei RNA sequencing data, we also determined putative communication networks between UC-MSCs and resident lung cell populations.Measurements And Main ResultsMost UC-MSCs displayed a similar transcriptome despite of their pregnancy-related conditions and mitigated hyperoxia-induced lung injury in newborn rats. Conversely, HNDFs, one term and two preeclampsia preterm UC-MSC donors exhibited a distinct transcriptome enriched in genes related to fibroblast function and senescence and were devoid of therapeutic benefit in hyperoxia-induced BPD. Conversely, therapeutic UC-MSCs displayed a unique transcriptome active in cell proliferation and distinct cell-cell interactions with neonatal lung cell populations, including NEGR and NRNX pathways.ConclusionTerm and preterm UC-MSCs are lung protective in experimental BPD. scRNA-seq allows to identify donors with a distinct UC-MSC transcriptome characteristic of reduced therapeutic potential.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.