-
- Elias Salzer, Zahra Gorgin Karaji, Marina van Doeselaar, Marianna A Tryfonidou, and Keita Ito.
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Eur Spine J. 2024 Dec 5.
PurposeLimited nutrient transport is hypothesized to be involved in intervertebral disc (IVD) degeneration. It is widely recognized that the dominant mode of transport of small molecules such as glucose is via diffusion, rather than convection. However, recent findings suggest a role for convection-induced by fast (motion-related) and slow (diurnal) dynamic loading in molecular transport of even such small solutes. The aim of this study was to investigate whether fluid exchange induced by simulated physiological loading (composed of both fast cyclic or slower diurnal loading) can influence the molecular transport of a small molecule through the cartilage endplate (CEP) into the nucleus pulposus (NP) of IVDs.MethodsThe molecular transport of fluorescein through the CEP and into the NP was studied in a bovine CEP/NP explant model and loading was applied by an axial compression bioreactor. The loaded explants (convection and diffusion) were compared to unloaded explants (diffusion alone).ResultsIn the initial 24 h, there were no differences between loaded and unloaded explants, indicating that convection did not enhance molecular transport of small solutes over diffusion alone. Notably, after 48 h which corresponds to two complete diurnal cycles of tissue compression, fluid exudation/imbibing and redistribution, the fluorescein concentration was significantly increased in the top and bottom layer of the explant, when compared to the unloaded explant.ConclusionsSlower diurnal cyclic compression of the IVD might enhance the transport of small molecules into the IVD although it could not be discerned whether this was due to diffusion/convection or a combination.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.