• Cochrane Db Syst Rev · Dec 2024

    Exercise for osteoarthritis of the knee.

    • Belinda J Lawford, Michelle Hall, Rana S Hinman, Martin Van der Esch, Alison R Harmer, Libby Spiers, Alex Kimp, Andrea Dell'Isola, and Kim L Bennell.
    • Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Victoria, Australia.
    • Cochrane Db Syst Rev. 2024 Dec 3; 12 (12): CD004376CD004376.

    BackgroundKnee osteoarthritis (OA) is a major public health issue causing chronic pain, impaired physical function, and reduced quality of life. As there is no cure, self-management of symptoms via exercise is recommended by all current international clinical guidelines. This review updates one published in 2015.ObjectivesWe aimed to assess the effects of land-based exercise for people with knee osteoarthritis (OA) by comparing: 1) exercise versus attention control or placebo; 2) exercise versus no treatment, usual care, or limited education; 3) exercise added to another co-intervention versus the co-intervention alone.Search MethodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and two trial registries (ClinicalTrials.gov and World Health Organisation International Clinical Trials Registry Platform), together with reference lists, from the date of the last search (1st May 2013) until 4 January 2024, unrestricted by language.Selection CriteriaWe included randomised controlled trials (RCTs) that evaluated exercise for knee OA versus a comparator listed above. Our outcomes of interest were pain severity, physical function, quality of life, participant-reported treatment success, adverse events, and study withdrawals.Data Collection And AnalysisWe used the standard methodological procedures expected by Cochrane for systematic reviews of interventions.Main ResultsWe included 139 trials (12,468 participants): 30 (3065 participants) compared exercise to attention control or placebo; 60 (4834 participants) compared exercise with usual care, no intervention or limited education; and 49 (4569 participants) evaluated exercise added to another intervention (e.g. weight loss diet, physical therapy, detailed education) versus that intervention alone. Interventions varied substantially in duration, ranging from 2 to 104 weeks. Most of the trials were at unclear or high risk of bias, in particular, performance bias (94% of trials), detection bias (94%), selective reporting bias (68%), selection bias (57%), and attrition bias (48%). Exercise versus attention control/placebo Compared with attention control/placebo, low-certainty evidence indicates exercise may result in a slight improvement in pain immediately post-intervention (mean 8.70 points better (on a scale of 0 to 100), 95% confidence interval (CI) 5.70 to 11.70; 28 studies, 2873 participants). Moderate-certainty evidence indicates exercise likely results in an improvement in physical function (mean 11.27 points better (on a scale of 0 to 100), 95% CI 7.64 to 15.09; 24 studies, 2536 participants), but little to no improvement in quality of life (mean 6.06 points better (on a scale of 0 to 100), 95% CI -0.13 to 12.26; 6 studies, 454 participants). There was moderate-certainty evidence that exercise likely increases participant-reported treatment success (risk ratio (RR) 1.46, 95% CI 1.11 to 1.92; 2 studies 364 participants), and likely does not increase study withdrawals (RR 1.08, 95% CI 0.92 to 1.26; 29 studies, 2907 participants). There was low-certainty evidence that exercise may not increase adverse events (RR 2.02, 95% CI 0.62 to 6.58; 11 studies, 1684 participants). Exercise versus no treatment/usual care/limited education Compared with no treatment/usual care/limited education, low-certainty evidence indicates exercise may result in an improvement in pain immediately post-intervention (mean 13.14 points better (on a scale of 0 to 100), 95% CI 10.36 to 15.91; 56 studies, 4184 participants). Moderate-certainty evidence indicates exercise likely results in an improvement in physical function (mean 12.53 points better (on a scale of 0 to 100), 95% CI 9.74 to 15.31; 54 studies, 4352 participants) and a slight improvement in quality of life (mean 5.37 points better (on a scale of to 100), 95% CI 3.19 to 7.54; 28 studies, 2328 participants). There was low-certainty evidence that exercise may result in no difference in participant-reported treatment success (RR 1.33, 95% CI 0.71 to 2.49; 3 studies, 405 participants). There was moderate-certainty evidence that exercise likely results in no difference in study withdrawals (RR 1.03, 95% CI 0.88 to 1.20; 53 studies, 4408 participants). There was low-certainty evidence that exercise may increase adverse events (RR 3.17, 95% CI 1.17 to 8.57; 18 studies, 1557 participants). Exercise added to another co-intervention versus the co-intervention alone Moderate-certainty evidence indicates that exercise when added to a co-intervention likely results in improvements in pain immediately post-intervention compared to the co-intervention alone (mean 10.43 points better (on a scale of 0 to 100), 95% CI 8.06 to 12.79; 47 studies, 4441 participants). It also likely results in a slight improvement in physical function (mean 9.66 points better, 95% CI 7.48 to 11.97 (on a 0 to 100 scale); 44 studies, 4381 participants) and quality of life (mean 4.22 points better (on a 0 to 100 scale), 95% CI 1.36 to 7.07; 12 studies, 1660 participants) immediately post-intervention. There was moderate-certainty evidence that exercise likely increases participant-reported treatment success (RR 1.63, 95% CI 1.18 to 2.24; 6 studies, 1139 participants), slightly reduces study withdrawals (RR 0.82, 95% CI 0.70 to 0.97; 41 studies, 3502 participants), and slightly increases adverse events (RR 1.72, 95% CI 1.07 to 2.76; 19 studies, 2187 participants). Subgroup analysis and meta-regression We did not find any differences in effects between different types of exercise, and we found no relationship between changes in pain or physical function and the total number of exercise sessions prescribed or the ratio (between exercise group and comparator) of real-time consultations with a healthcare provider. Clinical significance of the findings To determine whether the results found would make a clinically meaningful difference to someone with knee OA, we compared our results to established 'minimal important difference' (MID) scores for pain (12 points on a 0 to 100 scale), physical function (13 points), and quality of life (15 points). We found that the confidence intervals of mean differences either did not reach these thresholds or included both a clinically important and clinically unimportant improvement.Authors' ConclusionsWe found low- to moderate-certainty evidence that exercise probably results in an improvement in pain, physical function, and quality of life in the short-term. However, based on the thresholds for minimal important differences that we used, these benefits were of uncertain clinical importance. Participants in most trials were not blinded and were therefore aware of their treatment, and this may have contributed to reported improvements.Copyright © 2024 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.