• J Headache Pain · Dec 2024

    Review

    Machine learning classification meets migraine: recommendations for study evaluation.

    • Igor Petrušić, A Andrej Savić, Katarina Mitrović, Nebojša Bačanin, Gabriele Sebastianelli, Daniele Secci, and Gianluca Coppola.
    • Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia. ip7med@yahoo.com.
    • J Headache Pain. 2024 Dec 5; 25 (1): 215215.

    AbstractThe integration of machine learning (ML) classification techniques into migraine research has offered new insights into the pathophysiology and classification of migraine types and subtypes. However, inconsistencies in study design, lack of methodological transparency, and the absence of external validation limit the impact and reproducibility of such studies. This paper presents a framework of six essential recommendations for evaluating ML-based classification in migraine research: (1) group homogenization by clinical phenotype, attack frequency, comorbidity, therapy, and demographics; (2) defining adequate sample size; (3) quality control of collected and preprocessed data; (4) transparent training, testing, and performance evaluation of ML models, including strategies for data splitting, overfitting control, and feature selection; (5) interpretability of results with clinical relevance; and (6) open data and code sharing to facilitate reproducibility. These recommendations aim to balance the trade-off between model generalization and precision while encouraging collaborative standardization across the ML and headache communities. Furthermore, this framework intends to stimulate discussion toward forming a consortium to establish definitive guidelines for ML-based classification research in migraine field.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…