-
- TaylorR AndrewRA0000-0002-9082-6644Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA.Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, Connecticut, USA.Department of , Rohit B Sangal, Moira E Smith, Adrian D Haimovich, Adam Rodman, Mark S Iscoe, Suresh K Pavuluri, Christian Rose, Alexander T Janke, Donald S Wright, Vimig Socrates, and Arwen Declan.
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
- Acad Emerg Med. 2024 Dec 15.
AbstractDiagnostic errors in health care pose significant risks to patient safety and are disturbingly common. In the emergency department (ED), the chaotic and high-pressure environment increases the likelihood of these errors, as emergency clinicians must make rapid decisions with limited information, often under cognitive overload. Artificial intelligence (AI) offers promising solutions to improve diagnostic errors in three key areas: information gathering, clinical decision support (CDS), and feedback through quality improvement. AI can streamline the information-gathering process by automating data retrieval, reducing cognitive load, and providing clinicians with essential patient details quickly. AI-driven CDS systems enhance diagnostic decision making by offering real-time insights, reducing cognitive biases, and prioritizing differential diagnoses. Furthermore, AI-powered feedback loops can facilitate continuous learning and refinement of diagnostic processes by providing targeted education and outcome feedback to clinicians. By integrating AI into these areas, the potential for reducing diagnostic errors and improving patient safety in the ED is substantial. However, successfully implementing AI in the ED is challenging and complex. Developing, validating, and implementing AI as a safe, human-centered ED tool requires thoughtful design and meticulous attention to ethical and practical considerations. Clinicians and patients must be integrated as key stakeholders across these processes. Ultimately, AI should be seen as a tool that assists clinicians by supporting better, faster decisions and thus enhances patient outcomes.© 2024 The Author(s). Academic Emergency Medicine published by Wiley Periodicals LLC on behalf of Society for Academic Emergency Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.