• J Formos Med Assoc · Dec 2024

    The optimal labelling method for artificial intelligence-assisted polyp detection in colonoscopy.

    • Yen-Po Wang, Ying-Chun Jheng, Ming-Chih Hou, and Ching-Liang Lu.
    • Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taiwan; Division of Gastroenterology, Taipei Veterans General Hospital, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University School of Medicine, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taiwan.
    • J Formos Med Assoc. 2024 Dec 26.

    BackgroundThe methodology in colon polyp labeling in establishing database for ma-chine learning is not well-described and standardized. We aimed to find out the best annotation method to generate the most accurate model in polyp detection.Methods3542 colonoscopy polyp images were obtained from endoscopy database of a tertiary medical center. Two experienced endoscopists manually annotated the polyp with (1) exact outline segmentation and (2) using a standard rectangle box close to the polyp margin, and extending 10%, 20%, 30%, 40% and 50% longer in both width and length of the standard rectangle for AI modeling setup. The images were randomly divided into training and validation sets in 4:1 ratio. U-Net convolutional network architecture was used to develop automatic segmentation machine learning model. Another unrelated verification set was established to evaluate the performance of polyp detection by different segmentation methods.ResultsExtending the bounding box to 20% of the polyp margin represented the best performance in accuracy (95.42%), sensitivity (94.84%) and F1-score (95.41%). Exact outline segmentation model showed the excellent performance in sensitivity (99.6%) and the worst precision (77.47%). The 20% model was the best among the 6 models. (confidence interval = 0.957-0.985; AUC = 0.971).ConclusionsLabelling methodology affect the predictability of AI model in polyp detection. Extending the bounding box to 20% of the polyp margin would result in the best polyp detection predictive model based on AUC data. It is mandatory to establish a standardized way in colon polyp labeling for comparison of the precision of different AI models.Copyright © 2024 Formosan Medical Association. Published by Elsevier B.V. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.