• World Neurosurg · Feb 2025

    3D quantitative MRI: a fast and reliable method for ventricular volumetry.

    • Rafael T Holmgren, Anders Tisell, WarntjesMarcel J BMJBCenter for Medical Image Science and Visualization (CMIV), Linköping University, Sweden; SyntheticMR AB, Linköping, Sweden., and Charalampos Georgiopoulos.
    • Departments of Neurosurgery, Biomedical and Clinical Sciences, Linköping University, Sweden. Electronic address: rafael.holmgren@liu.se.
    • World Neurosurg. 2025 Feb 3; 195: 123661123661.

    PurposeVolumetry of cerebral ventricles is a far more sensitive measure for shunt-induced reduction of ventricular size than traditional 2-dimensional (2D) measures, such as Evans index. However, available ventricle segmentation methods are time-consuming, resulting in limited use in clinical practice. Quantitative MRI (qMRI) obtains objective measurements of physical tissue properties, enabling automatic segmentation of white and gray matter and intracranial cerebrospinal fluid. The aim of this study was to evaluate the reliability and processing time of both manual and manually corrected automatic ventricular volumetry through the application of 3D qMRI.MethodsAn independent examiner performed manual ventricular volumetry segmentations on 45 3D qMRI acquisitions (15 healthy individuals, 15 idiopathic normal pressure hydrocephalus (iNPH) patients, 15 shunted iNPH patients) twice. Another independent examiner manually segmented 15 of these acquisitions once. An automatic ventricle segmentation algorithm generated a third set of ventricular segmentations for all 45 data sets. The automatic segmentations were then corrected by both examiners to obtain a fourth set of data. All segmentations were assessed for intra- and interobserver reliability.ResultsIntra- and interobserver reliability for all segmentations, manual, corrected, and automatic, was excellent (intra-class correlation coefficient 1.000, 1.000 and 0.999 respectively). Ventricular volumes were on average 42 ± 18 mL (mean ± SD) in healthy individuals, 140 ± 34 mL in iNPH patients, and 113 ± 35 mL in shunted iNPH patients.Conclusions3D qMRI is a reliable and time-efficient method to obtain relevant volumetric measures of intracranial cerebrospinal fluid spaces for both clinical and research purposes. The corrected automatic segmentations provide a feasible time expenditure for clinicians caring for patients with iNPH.Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…