-
- Juan Yang, Yingying Yao, Shuo Fan, and Xiaoyan Li.
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- Shock. 2025 Feb 1; 63 (2): 210216210-216.
AbstractBackground: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation. 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and 5-ethynyl-2'-deoxyuridine (EdU) assay were performed to examine the proliferation of LPS-treated WI-38 cells. Flow cytometry analysis was conducted to detect LPS-treated WI-38 cell apoptosis. ELISA kits were utilized to determine the concentrations of inflammatory factors (IL-1β and TNF-α). Superoxide dismutase activity and reactive oxygen species level were examined with related kits. Ubibrowser (http://ubibrowser.bio-it.cn/ubibrowser/), ubiquitination assay, and co-immunoprecipitation assay demonstrated the interaction between USP9X and transducin β-like 1X related protein 1 (TBL1XR1). qRT-PCR assay and western blot assay were manipulated to determine the expression of USP9X and TBL1XR1. TBL1XR1 and USP9X knockdown experiments were conducted to explore their functions on LPS-induced WI-38 cell injury and inflammation. Results: TBL1XR1 expression was upregulated in LPS-treated WI-38 cells. TBL1XR1 knockdown promoted cell proliferation and repressed apoptosis, inflammation, and oxidative stress in LPS-treated WI-38 cells. Moreover, USP9X deubiquitinated TBL1XR1 to regulate TBL1XR1 expression. USP9X knockdown restored the effects of LPS on WI-38 cell proliferation, apoptosis, inflammation, and oxidative stress, but these effects of USP9X knockdown were further abolished by TBL1XR1 overexpression. In addition, USP9X promoted the NF-κB signaling pathway by the deubiquitination of TBL1XR1. Conclusion: USP9X promoted the apoptosis, inflammation, and oxidative stress of LPS-stimulated WI-38 cells through the deubiquitination of TBL1XR1.Copyright © 2024 by the Shock Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.