• Acad Emerg Med · Jan 2025

    Words to live by: Using medic impressions to identify the need for prehospital lifesaving interventions.

    • Aaron C Weidman, Zach Sedor-Schiffhauer, Chase Zikmund, David D Salcido, Francis X Guyette, Leonard S Weiss, Ronald K Poropatich, and Michael R Pinsky.
    • Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
    • Acad Emerg Med. 2025 Jan 24.

    BackgroundPrehospital emergencies require providers to rapidly identify patients' medical condition and determine treatment needs. We tested whether medics' initial, written impressions of patient condition contain information that can help identify patients who require prehospital lifesaving interventions (LSI) prior to or during transport.MethodsWe analyzed free-text medic impressions of prehospital patients encountered at the scene of an accident or injury, using data from STAT MedEvac air medical transport service from 2012 to 2021. EMR records were used to identify LSIs performed for these patients in prehospital settings. Text was cleaned via natural language processing and transformed using term frequency-inverse document frequency. A gradient boosting machine learning (ML) model was used to predict individual patient need for prehospital LSI as well as seven LSI subcategories (e.g., airway interventions, blood transfusion, vasopressor medication).ResultsA total of 12,913 prehospital patients were included in our sample (mean age = 52.3 years, 63% men). We observed good ML performance in predicting overall LSI (area under the receiver operating curve = 0.793, 95% confidence interval = [0.776-0.810]; average precision = 0.670, 95% confidence interval = [0.643-0.695] vs. LSI rate of 0.282) and equivalent-or-better performance in predicting each LSI subcategory except for crystalloid fluid administration. We identified individual words within medic impressions that portended high (e.g., unresponsive, hemorrhage) or low (e.g., droop, rib) LSI rates. Calibration analysis showed that models could prioritize correct LSI identification (i.e., high sensitivity) or accurate triage (i.e., low false-positive rate). Sensitivity analyses showed that model performance was robust when removing from medic impressions words that directly labeled an LSI.ConclusionsML based on free-text medic impressions can help identify patient need for prehospital LSI. We discuss future work, such as applying similar methods to 9-1-1 call requests, and potential applications, including voice-to-text translation of medic impressions.© 2025 The Author(s). Academic Emergency Medicine published by Wiley Periodicals LLC on behalf of Society for Academic Emergency Medicine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…