• Brit J Hosp Med · Jan 2025

    The Application Value of an Artificial Intelligence-Driven Intestinal Image Recognition Model to Evaluate Intestinal Preparation before Colonoscopy.

    • Xirong Xu, Jiahao Liu, Jianwei Qiu, Benfang Fan, Tao He, Shichun Feng, Jinjie Sun, and Zhenming Ge.
    • Digestive Endoscopy Center, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
    • Brit J Hosp Med. 2025 Jan 24; 86 (1): 1111-11.

    AbstractAims/Background Artificial intelligence (AI), with advantages such as automatic feature extraction and high data processing capacity and being unaffected by fatigue, can accurately analyze images obtained from colonoscopy, assess the quality of bowel preparation, and reduce the subjectivity of the operating physician, which may help to achieve standardization and normalization of colonoscopy. In this study, we aimed to explore the value of using an AI-driven intestinal image recognition model to evaluate intestinal preparation before colonoscopy. Methods In this retrospective analysis, we analyzed the clinical data of 98 patients who underwent colonoscopy in Nantong First People's Hospital from May 2023 to October 2023. Among them, 47 cases were evaluated based on the intestinal preparation map and the last fecal characteristics (Regular group), and 51 cases were evaluated using an AI-driven intestinal image recognition model (AI group). The duration of colonoscopy examination, intestinal cleanliness, incidence of adverse reactions, and satisfaction with intestinal preparation of the two groups were analyzed. Results The time for colonoscopy in the AI group was shorter than that in the Regular group, and the intestinal cleanliness score in the AI group was higher than that in the Regular group (p < 0.05). The incidence of adverse reactions in the AI group (3.92%) was lower than that in the Regular group (10.64%), but the difference was not statistically significant (p > 0.05). The satisfaction rate of intestinal preparation in the AI group (96.08%) was comparable to that of the Regular group (82.98%) (p > 0.05). Conclusion Compared with the assessment based solely on the intestinal preparation map and the last fecal characteristics, the application of AI intestinal image recognition model in intestinal preparation before colonoscopy can shorten the time of colonoscopy and improve intestinal cleanliness, but with comparable patient satisfaction and safety.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…