• J Pain Symptom Manage · Jan 2025

    Review

    NLP for Analyzing Electronic Health Records and Clinical Notes in Cancer Research: A Review.

    • Muhammad Bilal, Ameer Hamza, and Nadia Malik.
    • Department of Pharmaceutical Outcomes and Policy (M.B.), University of Florida, Gainesville, Florida, USA; Department of Software Engineering (M.B.), National University of Computer and Emerging Sciences, Islamabad, Pakistan. Electronic address: mbilal.csit@gmail.com.
    • J Pain Symptom Manage. 2025 Jan 31.

    AbstractThis review examines the application of natural language processing (NLP) techniques in cancer research using electronic health records (EHRs) and clinical notes. It addresses gaps in existing literature by providing a broader perspective than previous studies focused on specific cancer types or applications. A comprehensive literature search in the Scopus database identified 94 relevant studies published between 2019 and 2024. The analysis revealed a growing trend in NLP applications for cancer research, with information extraction (47 studies) and text classification (40 studies) emerging as predominant NLP tasks, followed by named entity recognition (7 studies). Among cancer types, breast, lung, and colorectal cancers were found to be the most studied. A significant shift from rule-based and traditional machine learning approaches to advanced deep learning techniques and transformer-based models was observed. It was found that dataset sizes used in existing studies varied widely, ranging from small, manually annotated datasets to large-scale EHRs. The review highlighted key challenges, including the limited generalizability of proposed solutions and the need for improved integration into clinical workflows. While NLP techniques show significant potential in analyzing EHRs and clinical notes for cancer research, future work should focus on improving model generalizability, enhancing robustness in handling complex clinical language, and expanding applications to understudied cancer types. The integration of NLP tools into palliative medicine and addressing ethical considerations remain crucial for utilizing the full potential of NLP in enhancing cancer diagnosis, treatment, and patient outcomes. This review provides valuable insights into the current state and future directions of NLP applications in cancer research.Copyright © 2025 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…