• PLoS medicine · Feb 2025

    Multicenter Study Observational Study

    Consecutive prediction of adverse maternal outcomes of preeclampsia, using the PIERS-ML and fullPIERS models: A multicountry prospective observational study.

    • Guiyou Yang, Tünde Montgomery-Csobán, Wessel Ganzevoort, Sanne J Gordijn, Kimberley Kavanagh, Paul Murray, Laura A Magee, Henk Groen, and Peter von Dadelszen.
    • Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
    • PLoS Med. 2025 Feb 1; 22 (2): e1004509e1004509.

    BackgroundPreeclampsia is a potentially life-threatening pregnancy complication. Among women whose pregnancies are complicated by preeclampsia, the Preeclampsia Integrated Estimate of RiSk (PIERS) models (i.e., the PIERS Machine Learning [PIERS-ML] model, and the logistic regression-based fullPIERS model) accurately identify individuals at greatest or least risk of adverse maternal outcomes within 48 h following admission. Both models were developed and validated to be used as part of initial assessment. In the United Kingdom, the National Institute for Health and Care Excellence (NICE) recommends repeated use of such static models for ongoing assessment beyond the first 48 h. This study evaluated the models' performance during such consecutive prediction.Methods And FindingsThis multicountry prospective study used data of 8,843 women (32% white, 30% black, and 26% Asian) with a median age of 31 years. These women, admitted to maternity units in the Americas, sub-Saharan Africa, South Asia, Europe, and Oceania, were diagnosed with preeclampsia at a median gestational age of 35.79 weeks between year 2003 and 2016. The risk differentiation performance of the PIERS-ML and fullPIERS models were assessed for each day within a 2-week post-admission window. The PIERS adverse maternal outcome includes one or more of: death, end-organ complication (cardiorespiratory, renal, hepatic, etc.), or uteroplacental dysfunction (e.g., placental abruption). The main outcome measures were: trajectories of mean risk of each of the uncomplicated course and adverse outcome groups; daily area under the precision-recall curve (AUC-PRC); potential clinical impact (i.e., net benefit in decision curve analysis); dynamic shifts of multiple risk groups; and daily likelihood ratios. In the 2 weeks window, the number of daily outcome events decreased from over 200 to around 10. For both PIERS-ML and fullPIERS models, we observed consistently higher mean risk in the adverse outcome (versus uncomplicated course) group. The AUC-PRC values (0.2-0.4) of the fullPIERS model remained low (i.e., close to the daily fraction of adverse outcomes, indicating low discriminative capacity). The PIERS-ML model's AUC-PRC peaked on day 0 (0.65), and notably decreased thereafter. When categorizing women into multiple risk groups, the PIERS-ML model generally showed good rule-in capacity for the "very high" risk group, with positive likelihood ratio values ranging from 70.99 to infinity, and good rule-out capacity for the "very low" risk group where most negative likelihood ratio values were 0. However, performance declined notably for other risk groups beyond 48 h. Decision curve analysis revealed a diminishing advantage for treatment guided by both models over time. The main limitation of this study is that the baseline performance of the PIERS-ML model was assessed on its development data; however, its baseline performance has also undergone external evaluation.ConclusionsIn this study, we have evaluated the performance of the fullPIERS and PIERS-ML models for consecutive prediction. We observed deteriorating performance of both models over time. We recommend using the models for consecutive prediction with greater caution and interpreting predictions with increasing uncertainty as the pregnancy progresses. For clinical practice, models should be adapted to retain accuracy when deployed serially. The performance of future models can be compared with the results of this study to quantify their added value.Copyright: © 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.